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Abstract

The Brandeis CCD Angle Monitor (BCAM) has been selected by the ATLAS collaboration to
perform the polar alignment of the endcap muon system. This note describes the procedure for
obtaining the nine calibration parameters which characterize any BCAM. This work was performed
at Brandeis University.

1 Description of Prototype BCAM Camera

The operation of the BCAM camera is described in Atlas Note �The BCAM Camera�1. It is essentially a
lens�CCD camera with the addition of an infrared (IR) �lter in front of the lens, an aperture immediately
behind the lens, and two (front-surface-re�ecting) mirrors between the lens and CCD that bend the light
path back upon itself to keep the overall package smaller (see Figure 1).

Figure 1: These are pictures of a BCAM with its cover (and IR �lter) taken o� and electronics removed.
In the left picture, the light proceeds through the lens at the lower right, re�ects o� the mirrors
at the top, and is recorded by the CCD at the bottom left. In the right picture, one may see
the aperture behind the lens at the upper left, the two mirrors at the lower left and right, and
the front of the CCD at the upper right. The screw holes on the optical table are placed at 1
inch (25.4 cm) intervals to give a sense of scale.

The BCAM is uniquely placed onto a set of three balls by a kinematic mount machined into the base
of each camera. The mount consists of a conical shaped receptacle (cone), an elongated conical shaped

�Email: ddaniels@brandeis.edu
1ATLAS note in preparation.

1

A
T

L
-M

U
O

N
-2

00
0-

02
6

D
ec

 2
00

0



groove (slot), and a �at milled area (plane) (see Figure 2). One ball sits in the cone hole and speci�es a
unique point about which the BCAM may revolve. The second ball rests in the slot, and together with
the cone ball this speci�es a unique axis about which the BCAM may still rotate. The third ball locates
the camera on the axis of rotation, �xing it rigidly in space. A single screw provides the contact force
holding the camera onto its three balls so that it may be mounted in any orientation (even upside-down).
One advantage of the three ball kinematic mount is that a speci�c local coordinate system may be de�ned

Figure 2: The underside of a BCAM, showing the mounts for the three balls: cone at upper center, slot
at lower left, and plane at lower right.

for each BCAM simply by measuring the positions of the three balls. It is therefore not important to
place the balls precisely, but only to measure their locations precisely. The positions of the three balls can
be measured by a micron-precision coordinate measuring machine (CMM), and this speci�es the local
coordinate system for each BCAM subsequently placed on them.

The BCAM local coordinate system may be de�ned in numerous ways, and the results of the calibration
are insensitive to the particular de�nition. In this work, the BCAM coordinate system is de�ned as
follows. The origin is placed at the center of the �cone ball�. The bz direction is initially de�ned as the
direction from the middle of the �slot ball� to the origin. The middle of the �plane ball� lies in the xz
plane, and the y axis completes a right-handed coordinate system. We then rotate these coordinate axes
about the y axis by an angle approximately equal to one-half the angle that the balls make (rotation
angle is 0.5596/2 radians) so that the z axis runs roughly from the midpoint between the slot and plane
balls towards the cone ball. This roughly corresponds to the direction in which the BCAM is viewing.

During the calibration several coordinate systems are used. The global coordinate system is the one
into which all others are placed. It is roughly identi�ed with the optical table on which the calibration
apparatus is placed, and is therefore sometimes called the table coordinate system. The CMM measures
ball centers in its own local coordinate system, and the BCAM which sits on the balls has yet another
local coordinate system attached to it. Finally, the CCD which records the image positions has its own
(2-dimensional) coordinate system.

The function of calibration is to de�ne a particular set of parameters for each BCAM so that, given the
positions of the centers of the three balls on which it sits in global coordinates, and the position of an
image on the CCD in CCD local coordinates, one may construct a ray (point and direction) in global
coordinates which points back toward the source.

2 De�nition of Calibration Parameters

2.1 Simple Lens�CCD Camera Example

A simple lens�CCD camera schematic is shown in Figure 3. The pivot point (PP) of a camera is the
point through which all light rays pass unde�ected; in this case it corresponds to the center of the lens,�!
L . The line connecting the origin (center) of the CCD

�!
C and the pivot point

�!
L has a direction bn. The
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Figure 3: Schematic of a simple lens�CCD camera in an arbitrary coordinate system with origin
�!
O .

distance between
�!
L and

�!
C is F . Light from a source at position

�!
S will form an image on the CCD

at point
�!
P . The CCD may be rotated by an angle 	 about the BCAM z axis (the longitudinal axis).

With these de�nitions, one may reconstruct the source bearing (ray pointing at
�!
S ) from a CCD image

position
�!
P as follows. Rotating the image position in CCD coordinates about the longitudinal axis by

�	 and adding the result to the position
�!
C yields the image position in BCAM coordinates. The source�!

S is then found by tracing the ray backward from the image point
�!
P through the pivot point

�!
L .

A simple lens�CCD camera can thus produce a ray (point and direction) pointing towards a source given
the image position and a suitable choice of seven parameters. In the example above we used the pivot
point (Lx; Ly; Lz), a point on the CCD (Cx; Cy; Cz), and the angle 	. For the actual BCAM calibration

we have chosen to represent the point
�!
C by the length F and the two direction cosines (tx; ty) which

specify the direction bn, but this is equivalent to (Cx; Cy; Cz).

Additional elements in the optical description of the BCAM may a�ect the interpretation of these seven
parameters, but they should not require any new parameters. For example, the addition of an aperture
changes both the pivot point position and the CCD center, but the new system can still be described
by a set of seven parameters. (See Appendix I.) It is important to keep in mind, therefore, that these
parameters do not correspond directly to the positions of physical objects, i.e. �the position of the CCD
plane� becomes a euphemism for the set of parameters (F; tx; ty) and does necessarily correspond to the
physical location of the CCD.

2.2 Cylindrical Lensing E�ects

The two mirrors should have no e�ect either, as they just bend the light path around in a `U' shape.
Unfortunately, the mirrors were not perfectly �at (their speci�cations state that they are �at to within
four wavelengths over their surface of approximately 1.56�1.06 mm), which caused them to act as very
long focal-length lenses. Since we cannot assume that the e�ect is purely spherical in nature, we model
each mirror as a lens with spherical and cylindrical components, with the axis of the cylindrical component
unknown. The combination of two spherical lenses is optically equivalent to a third single spherical lens,
and two cylindrical lenses are optically equivalent to a spherical lens plus a cylindrical lens, so we can
model the e�ect of the BCAM main lens plus the two mirrors as a single spherical lens plus a single
cylindrical lens. The spherical lens is already accounted for in the seven calibration parameters, and the
extra cylindrical component adds two more parameters.
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The e�ect of a cylindrical lens is to move points on the CCD either closer together or further apart,
depending on whether the cylindrical lens is focusing or defocusing. A focusing lens, however, is in-
distinguishable from a defocusing lens turned at right angles plus an additional overall scaling factor.
The ambiguity is resolved by requiring the two additional BCAM parameters to describe a defocusing

cylindrical lens with the overall scaling factor, if any, accounted for by a rede�nition of the main lens
focal length.

To �rst order, the displacement of the image on the CCD due to cylindrical distortion is linear in the
perpendicular distance to the cylindrical axis. We therefore parameterize the cylindrical e�ect in terms
of a two-dimensional vector

�!
D whose length represents the strength of the e�ect, and whose direction

on the CCD dictates the direction of expansion (i.e. the correction to each image with position
�!
T is��!

T � �!D
�
in the direction of

�!
D , or

��!
T � �!D

� bD ).

The BCAM can thus be parameterized by nine constants: the position of the pivot point (Px; Py; Pz),
the distance F and direction cosines (tx; ty) of the vector from the CCD center to the pivot point, the
angle  that the CCD makes about the z-axis, and the cylindrical distortion vector (Dx; Dy).

The IR �lter can also contribute to the interpretation of the calibration parameters. If the glass were
perfectly �at, it would simply move the pivot point slightly closer to the �lter because of refraction.
Planar non-uniformities (wedge angles in the glass, e.g.) could cause the pivot point to move in all three
directions as well as a�ecting the values of the CCD plane parameters. If the glass has lensing e�ects
similar to the mirrors then it could also contribute to the cylindrical distortion vector. Thus, even if
the mirrors were removed from the BCAM design, the cylindrical parameters in principle still could be
non-zero.

3 Calibration Apparatus

3.1 The BCAM Roll Cage

The BCAM was mounted on a set of three balls that were set into a brass roll cage (see Figure 4). The
cage itself had cone�slot�plane (CSP) receptacles on four of its outer sides so that it could be mounted in
four di�erent orientations, corresponding to rotations about the BCAM longitudinal axis (see Figure 5).
The roll cage was mounted on a brass base plate (see Figure 4) containing three mounting balls and two
reference balls, and the base plate was �xed to an optical table (see Figure 6).

3.2 The Source Block

The source block was a 10.5�10�9.5 cm aluminum piece with 8 holes drilled into its front face, arranged
in concentric rectangles (see Figure 7). The outer holes were not all visible by the BCAM at the ranges
used for calibration, so only the inner four holes were instrumented with LED's. The source holes were
conical in shape, with the �small� end facing the BCAM to limit re�ections o� the walls of the hole. The
small ends of the inner four openings facing the BCAM had 2-mm diameters. Directly behind the face
plate of the source block was a layer of opal glass di�user, which was held in place by a backing plate
bolted onto the face plate (see Figure 8). The backing plate also held the light sources themselves. The
light sources were the HSDL4230 LED's from Hewlitt-Packard, which transmit 35 mW at 875 nm. The
range of a source was de�ned as the distance from the BCAM pivot point to the front surface (small end)
of the conical hole.

3.3 The Optical Table

The BCAM calibration measurements were performed on an optical table approximately 3.6m long by
1.5m wide (see Figure 6). After �xing the roll cage and placing the source block far enough away from
the BCAMs to permit all sources to be in view in all four BCAM orientations, we were left with a usable
dynamic range of 1.0�2.7m.
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Figure 4: Brass roll cage (right) and base (left) being measured by the coordinate measuring machine
(CMM). The BCAM views through a hole in the end of the roll cage which can be seen clearly
in this picture.

A straightedge was clamped to the surface of the table, and the roll cage base was pressed up against
this for location. The source block was then slid up and down along the straightedge to obtain di�erent
ranges.

The global (table) coordinate system was de�ned with respect to the roll cage base, since this could be
measured by the CMM and placed on the optical table repeatably. The origin of this system was the
corner of the roll cage base touching the surface of the table and the straightedge and closest to the source
block. The longitudinal axis from the camera toward the sources along the straightedge was the z axis;
the y axis pointed toward the ceiling, and the x axis pointed across the table away from the straightedge,
completing a right-handed coordinate system.

3.4 The Coordinate Measuring Machine

All precision mechanical measurements were made with our in-house coordinate measuring machine
(CMM), seen in Figure 4. This is a Brown & Sharpe model �microxcel pfx 454� �tted with a Renishaw
MIP probe head and ruby-tipped stylus to measure positions. Its stated accuracy is 7.6�m, with 2.2�m
repeatability. The measuring surface is a granite slab, and the dynamic range of the instrument is
510mm�458mm�406mm (L�W�H).

4 Calibration Procedure

4.1 Calibrating the Source Block

In order to calibrate a BCAM, we must begin with a set of sources with known relative positions. We
de�ne the position of an LED source as the location of the centroid of the distribution of light which is
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Figure 5: The BCAM mounted in the roll cage in its four orientations. Clockwise from upper left these
are 0Æ, 90Æ, 180Æ, and 270Æ.

emitted by it. Since the light distribution may not be perfectly uniform, this position is not equivalent
with e.g. the geometrical center of the exit hole in the face plate of the source block. We must therefore
perform a relative calibration of the source positions before we can calibrate BCAMs.

4.1.1 Distances between sources

We begin by placing a single source on a micrometer stage at some set range and viewing it with an
uncalibrated BCAM. As we move the source across the �eld of view of the BCAM in steps of known size,
we get the image magni�cation at that range. Remounting the BCAM at 90Æ and repeating the process
gives the magni�cation in the orthogonal direction on the BCAM's CCD. Recall that these magni�cations
may not be identical because of cylindrical distortions.

Replacing the single source and micrometer stage with the source block at the same range, we take images
of the four sources we will use for BCAM calibration. Knowing the magni�cation of this BCAM (in both
directions on the CCD) at that particular range yields the distances between all sources.

We used BCAM #44 to calibrate the source block. We placed the sources at a range of approximately
1.23m from the camera and moved them 10mm horizontally on a micrometer stage in steps of 0.5mm.
With the BCAM in the 0Æ orientation (CCD x direction) the magni�cation was 0.126308�0.000006, and
in the 90Æ orientation (CCD y direction) it was 0.125667�0.000005. Using these magni�cations and the
CCD spot positions, we can calculate the source positions shown in Table 1.

Source x (mm) y (mm)

5 17.842 14.923
6 9.824 14.912
7 9.842 8.921
8 17.869 8.912

Table 1: Source positions relative to a line from the upper left corner of the CCD through the pivot point
of the BCAM, in a coordinate system with x and y axes parallel to the CCD's axes (i.e. there
is an additional unknown global o�set and rotation yet to be accounted for).

The errors on the relative source positions are the order of a micron, and these are dominated by the
uncertainty in the micrometer stage calibration. The motion of the micrometer stage was calibrated with
an interferometer, and was found to be accurate to 0.02%. If the distance between sources is on the order
of 10mm, this gives a 2�m error on the distance between sources.
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Figure 6: Picture of the optical table on which the calibration data were taken. A BCAM is mounted in
the roll cage in the 0Æ orientation in the foreground, the source block is middle of the picture,
and the laser for the interferometer may be seen at the upper left.

4.1.2 Source block rotation

We now know the distances between the four sources in the source block, but since the BCAM is un-
calibrated, we do not know the absolute position of the array of sources nor their overall rotation about
the longitudinal axis. There are two methods we could use for determining the source block rotation.
We could either determine the rotation of the source block at each of the two ranges we use for BCAM
calibration, or we could determine the apparent (false) rotation introduced by the BCAM calibration and
subtract that afterwards. Both methods are described in this note, but only the latter method was used
in the actual calibration.

Both methods involve the use of a �at granite bar on which are placed both the source block and the
BCAM in its brass roll cage. Figure 9 shows a picture of the setup. Sliding a source across the bar in
the BCAM �eld of view marks out a horizontal line (in global coordinates) on the CCD. For the �rst
method, we may then replace the BCAM and source block on the optical table and take images of the
four sources at each of the source block's ranges. Knowing the direction of the global horizontal (x axis)
on the CCD, we may reconstruct the global rotation of the sources about the longitudinal axis at each
range. These rotations should in general be very similar, but may not be the same if for instance the
optical table is not perfectly �at.

For the second method, we �rst calibrate a single BCAM (described in Sections 4.2 and 4.3) assuming
that there is no rotation of the source block relative to the BCAM. This will result in a bias in the
CCD rotation angle parameter  , which can be measured and subtracted from all future calibrations.
The advantage of this approach is that it accounts for all possible sources of rotation at once, by simply
measuring their combined e�ect on the BCAM calibration.
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Figure 7: Front view of the source block showing the rectangular array of conical source holes.

Figure 8: Cross section of one LED source in the source block. From right to left we have the LED �xed
into a hole in the backing plate, the opal glass di�user, and the source block face plate showing
a conical hole. The BCAM views this source from the left.

Moving a source on the granite bar in 10 steps of 1�2mm at a range of approximately 2m yields an
e�ective BCAM�source block rotation of 3.6mrad (after initial BCAM calibration). Using this angle
and the distances calculated in Table 1, we can recalculate source positions in global coordinates such
that they cancel this net rotation for all future BCAM calibrations (see Table 2). There is still an
unknown transverse o�set to the source block, but we can proceed with the BCAM calibration without
this information.

4.2 Data Collection

If we know the relative positions of the sources to good precision, we can obtain the calibration parameters
as follows. To get the cylindrical distortion vector, we look at the spacing between all four source images
at a single range. For the CCD rotation angle  ; we need the image positions for two sources at a single
range. To get the longitudinal parameters Pz and F (see Section 2.2), we use two images at two di�erent
ranges. Finally, for the transverse parameters Pz, Pz, tx, and ty, we need a single source seen from two
camera rotations (about the longitudinal axis bz). With nine unknown parameters, we need at least nine
independent measurements per BCAM.

For each camera, we took (x,y) images of all four sources at two ranges and at four BCAM orientations,
for a total of 64 measurements. This gives us more than enough data and allows for some redundancy in
the calibration.
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Figure 9: Picture of the granite bar and BCAM setup used to obtain the relative rotation of this uncali-
brated BCAM about the longitudinal axis of the global coordinate system.

Source x (mm) y (mm)

5 54.568 72.920
6 46.550 72.880
7 46.589 66.889
8 54.616 66.909

Table 2: Source positions in global coordinates, up to a small transverse o�set. Relative positions and
overall rotation is correct.

The measurement procedure was performed by taking four images, one at a time, at the 0Æ BCAM
orientation and �near� source range. The BCAM was then rotated to the 90Æ position in the roll cage
and another set of four images was taken. After all four BCAM orientations were taken like this, the
sources were moved backward to the �far� range, the BCAM was placed back in its 0Æ orientation, and
the process was repeated.

4.3 Data Analysis Methods

Two software reconstruction methods were used on these data to obtain the calibration parameters for the
BCAMs, and these programs served as checks on each other. The �rst calibration method used a series
of steps to identify groups of calibration constants, and the second method used MINUIT to perform a
multivariate �2 minimization in the space of the calibration parameters.

4.3.1 Analytical approach

The analytic approach is probably the more intuitive of the two reconstruction techniques used. Since
groups of calibration parameters are obtained in semi-independent stages, each stage may be more easily
debugged before moving on to the next. In addition, it is easier to see directly which data a�ect which
calibration parameters using this approach.

In the �rst stage, the cylindrical distortion vector is obtained from the distances between image centroids
on the CCD. One does not need to know the exact rotation of the BCAM nor the range used. For four
positions, there are 6 pairs (Figure 10a), and though these are not independent, they may all be used
to construct the cylindrical distortion vector. If the images form a rectangle, yet the sources are known
to lie on the corners of a square, then there are two orthogonal possible distortions: one expanding,
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(a) (b) (c)

Figure 10: a) Lengths between image spots used for determining the cylindrical distortion vector. Or-
thogonal b) expansions and c) contractions are impossible to tell apart if the overall scale
factor is not known a priori. Open circles represent undistorted spot positions, closed circles
reprsented distorted positions.

the other contracting ( Figure 10b,c). Since the magni�cation is unknown (because the pivot point
position and PP-to-CCD distance have not yet been determined), either of these options is allowed. We
arbitrarily choose to accept the expanding solution, shown in Figure 10b; if the distortion is actually
contracting, this will appear as an expanding distortion in the orthogonal direction plus an additional
overall demagni�cation. In addition, since the distortion moves the spot outward from the center of
the CCD along the unsigned direction of the vector

�!
D , both

�!
D and ��!D are adequate descriptors of

the distortion. We (again arbitrarily) choose the solution with Dx > 0 so that we may have a unique
solution.

In the analytical approach, a method was chosen that did not rely on knowing the relative source posi-
tions.2 This decoupled the source block calibration (Section 4.1) from the cylindrical distortion vector

determination. For any pair of spot centroids on the CCD
�!
T1 and

�!
T2, corresponding to two sources at a

given BCAM orientation and source range, the vector between them could be called
�!
V1. In the absence

of any cylindrical distortion, this vector would be the ideal
�!
U1, where

�!
V1 =

�!
U1 +

��!
U1 � �!D

� bD. Given the

observable
�!
V1, we can approximate

�!
U1 (assuming

����!D��� � ����!U1��� � ����!V1���) by �!V1 � ��!
V1 � �!D

� bD. After a 90Æ

BCAM rotation, the same two sources make a new vector,
�!
V2. Rotating

�!
U1 by 90Æ as well, we get

�!
U 0

1,

and
�!
U 0

1+
��!
U 0

1 �
�!
D
� bD � �!U 00

1 should be the same as
�!
V2. The di�erence Æ =

�!
U 00

1 �
�!
V2 can then be minimized

using a successive approximation approach in order to solve for the components Dx and Dy.

Since there are 6 pairs of source images for each BCAM orientation, we can calculate Æ di�erences for each
of them for each pair of 90Æ BCAM rotations. There are 4 pairs of BCAM rotations (0Æ/90Æ, 90Æ/180Æ,
180Æ/270Æ, and 270Æ0Æ), so we have a total of 24 Æ distances. (We only use the images from the source
�near� range.) In the successive approximation, we minimize the sum of these 24 Æ's, added in quadrature.

The step size in the approximation was e�ectively 0.02% for each component of the vector
�!
D , so this

serves as a lower bound for the precision of this approach. The cylindrical distortion vector accounts for
two of the nine calibration parameters.

With the cylindrical distortion obtained, we can get the rotation of the BCAM by comparing the orien-
tation of the distortion-corrected images with the known orientation of the source block from the source
block calibration. In the analytical approach, this rotation angle  is estimated from each pair of source
images, and the results are averaged over all pairs.  represents the third BCAM calibration constant.

The longitudinal parameters Pz and F (Section 2.1) are derived by comparing two sources at the near
and far ranges. Figure 11 shows a schematic of the setup. The objects, represented by the two large
arrows in the �gure, are the distances between a pair of sources at the near (z1 � Pz) and far (z2 � Pz)
ranges. The magni�cation m is de�ned by the ratio of image �height� (hi) to object �height� (ho). By
similar triangles, the magni�cation is also given by the ratio F=r where r is the range. The di�erence in

2For an alternate method of obtaining the cylindrical distortion vector using a single BCAM orientation and the relative
source positions, see Appendix II.
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Pz− z1

O
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Figure 11: Schematic of the layout for determining the longitudinal calibration parameters.
�!
O represents

the global origin, which is arbitrary.

ranges is then

r2 � r1 = z2 � z1 � �z =
F

m2

� F

m1

= F
m1 �m2

m1m2

) F =
m1m2�z

m1 �m2

: (1)

Then, given that m1 = F= (z1 � Pz), e.g., we could insert F to �nd Pz, and we would have two more
BCAM calibration parameters.

We can also derive Pz independently of the source block calibration. Given that the ratio of image sizes
equals the ratio of the ranges by similar triangles, we have

hi1
hi2

=
r2
r1

=
z2 � Pz
z1 � Pz

(z1 � Pz)
hi1
hi2

= z2 � Pz

Pz

�
1� hi1

hi2

�
= z2 � z1

hi1
hi2

Pz =
z2 � z1 hi1

hi2

1� hi1

hi2

:

The �nal four BCAM parameters are the transverse variables Px, Py, tx, and ty. They represent the
transverse components of the pivot point and the CCD center, respectively. A central axis may be drawn
through the CCD center and the pivot point, such that the position of an image on the CCD with respect
to the CCD origin is proportional to the distance of the corresponding source from this central axis. This
is similar to the optical axis of a lens.

If we rotate the camera about the longitudinal axis of the BCAM (bz) by 180Æ, the central axis will also
�ip. The di�erence in the CCD positions of a source viewed from both orientations will be proportional
to the spread of the central axis at the source range before and after the �ip (see Figure 12). Since we
have determined the longitudinal parameters, we know the ranges r1 and r2, and the PP-CCD distance
F . This gives us the magni�cation of the CCD images, which gives us the two separations of the axes
(�ipped and un�ipped) at two ranges. Projecting back to the longitudinal positions of the pivot point
and the CCD, we get the axis separations there. One-half of the separation represents the o�set, and this
is the parameter we are interested in. Examining the x and y components of the image point separately
yields the x and y components of the PP and CCD parameters.

4.3.2 Global minimization method

The second method uses MINUIT to perform a multivariate �2-like minimization in the space of the
calibration parameters. Given a set of BCAM parameters and source positions, one can trace the light
path from source to CCD as follows. First, transform the source position from global coordinates into
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Figure 12: Schematic of the layout for determining the transverse calibration parameters.

BCAM local coordinates. Next, trace the ray straight from the source through the pivot point to the
CCD. Transform that point from BCAM local coordinates into CCD local coordinates. If we designate
this projected CCD point as

�!
Pi for source i and the actual BCAM reading for the same source as

�!
Bi, then

the function to be minimized is
P��!

Pi ��!Bi

�2
, where the sum is over all sources. This function should

be minimized by the best-�t nine BCAM parameters.

Actually, two separate functions are minimized, but they share the form described above. One function
�ts the shape of the source array, and this de�nes the cylindrical distortion vector

�!
D ; the other �ts for

the remaining 7 BCAM parameters. Since the two set of solutions are not entirely decoupled, the �ts
are repeated iteratively until they converge on a single set of 9 parameters. This typically involves two
minimizations for each function, and order (which function is minimized �rst) does not seem to matter.

If we know the absolute position of the sources (which we do not), then this minimization procedure
can �t for all 9 calibration parameters from a single BCAM orientation at two ranges. Since we have
four BCAM orientations, we get four semi-independent sets of results. Unfortunately, while we know the
relative source positions, including the overall rotation, we do not know the absolute position of the source
block with a high degree of precision. This a�ects the transverse position of the pivot point, since if the
source block is placed too high, e.g., the �t will try to compensate by moving the PP down by the same
amount. The other parameters should not be a�ected by such a source block translation. Fortunately,
opposite pairs of BCAM orientations (0Æ and 180Æ, or 90Æ and 270Æ) make equal and opposite errors in
the PP parameters. Averaging opposing pairs cancels the errors and yields two semi-independent sets of
BCAM parameters. For simplicity, let the average of the 0Æ and 180Æ orientations be the vertical solution,
and the average of the 90Æ and 270Æ orientations be the horizontal solution. These should be the same,
and their average is the quoted calibration result for a BCAM. A rough estimate of the precision of
each parameter is taken to be 1/2 the di�erence between the vertical and horizontal solutions for that
parameter. See Table 3 for an example output from the parameter �t.

Pivot Point CCD Origin Rotation Cyl. Distortion
Px (mm) Py (mm) Pz (mm) tx (mrad) ty (mrad) F (mm)  (mrad) Dx � 103 Dy � 103

0Æ 10.1291 17.3544 -15.6343 -0.7877 -0.3643 153.8669 -18.5586 1.9592 -1.3063
90Æ 10.3705 16.9231 -15.1128 -0.8477 -0.2393 153.8311 -18.3217 1.9056 -0.1560
180Æ 9.9389 16.6503 -17.9022 -0.6848 -0.1978 153.9796 -18.6213 3.2526 -1.1536
270Æ 9.6584 17.1263 -15.3619 -0.6789 -0.3933 153.8366 -18.2988 1.8792 -0.2394

Vertical 10.0340 17.0023 -16.7683 -0.7363 -0.2810 153.9232 -18.5900 2.6059 -1.2300
Horizontal 10.0144 17.0247 -15.2373 -0.7633 -0.3163 153.8338 -18.3102 1.8924 -0.1977

Average 10.0242 17.0135 -16.0028 -0.7498 -0.2987 153.8785 -18.4501 2.2492 -0.7138
Error 0.0098 0.0112 0.7655 0.0176 0.0176 0.0447 0.1399 0.3568 0.5161

Table 3: Example output from the global minimization analysis. The vertical and horizontal averages
are semi-independent, and the row marked �Average� represents the average of those two.
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5 Calibration Results

5.1 Precision

The calibration precision is composed of two parts: software and measurement precision. The di�erence
between the two reconstruction programs on the same set of data represents the software precision.
Repeating the calibration with new data for a given BCAM represents the measurement precision.

5.1.1 Agreement between the two reconstruction methods

Table 4 shows the calibration constants from 8 BCAMs calibrated with the analytical approach; Table 5
shows the calibration constants for the same 8 cameras (same data) analyzed with the global �t method.
The di�erence between the calibration constants using the two methods is shown in Table 6. One can see
that the di�erences between the two methods are small with respect to the uncertainties in the parameters
themselves.

Camera Pivot Point CCD Origin Rotation Cyl. Distortion
Number Px (mm) Py (mm) Pz (mm) tx (mrad) ty (mrad) F (mm)  (mrad) Dx � 103 Dy � 103

41 10.024 17.015 -16.065 -0.750 -0.299 153.892 -18.423 2.200 -0.600
42 9.980 17.017 -15.612 1.771 -0.947 153.537 0.864 8.000 0.200
44 10.006 17.041 -14.775 -0.873 -0.742 153.783 4.341 4.600 0.600
45 9.967 17.038 -13.976 -1.027 1.483 153.484 0.141 9.600 4.000
46 10.024 16.991 -16.289 -1.047 0.306 153.360 2.173 9.400 1.200
49 9.943 16.987 -16.376 -1.228 0.339 153.120 41.301 5.600 2.600
50 10.019 17.026 -14.977 -0.416 0.862 153.823 -0.907 9.000 1.400
51 10.026 17.043 -15.797 1.264 -0.531 151.836 -1.181 10.600 -6.000

Error 0.004 0.003 0.730 0.020 0.020 0.071 0.107 � �

Table 4: Calibration constants for 8 BCAMs using the analytical construction. The error line at the
bottom represents the standard deviation of each calibration constant for a given camera; it
is not the standard deviation of the distribution of constants from all 8 BCAMs, as they do
not have a common mean. The error on the cylindrical distortion parameters has not yet been
calculated in the analytical approach.

Camera Pivot Point CCD Origin Rotation Cyl. Distortion
Number Px (mm) Py (mm) Pz (mm) tx (mrad) ty (mrad) F (mm)  (mrad) Dx � 103 Dy � 103

41 10.024 17.014 -16.003 -0.750 -0.299 153.879 -18.450 2.249 -0.714
42 9.980 17.016 -15.604 1.771 -0.947 153.556 0.591 7.791 0.234
44 10.006 17.040 -14.832 -0.874 -0.742 153.800 4.160 3.427 0.492
45 9.967 17.037 -14.041 -1.027 1.483 153.548 -0.132 8.942 3.741
46 10.023 16.991 -16.299 -1.047 0.306 153.369 2.005 9.358 1.158
49 9.943 16.987 -16.340 -1.228 0.340 153.159 41.271 4.996 2.618
50 10.018 17.026 -15.046 -0.416 0.862 153.859 -1.134 8.621 1.578
51 10.025 17.042 -15.678 1.264 -0.532 151.840 -1.313 10.608 -5.964

Error 0.005 0.008 0.971 0.018 0.015 0.084 0.140 0.621 0.587

Table 5: Calibration constants for 8 BCAMs using the global �t construction (MINUIT). The error line
at the bottom represents the standard deviation of each calibration constant for a given camera;
it is not the standard deviation of the distribution of constants from all 8 BCAMs, as they do
not have a common mean.
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Camera Pivot Point CCD Origin Rotation Cyl. Distortion
Number Px (mm) Py (mm) Pz (mm) tx (mrad) ty (mrad) F (mm) (mrad) Dx � 103 Dy � 103

41 0.000 0.001 -0.062 0.000 0.000 0.013 0.027 -0.049 0.114
42 0.000 0.001 -0.008 0.000 0.000 -0.019 0.273 0.209 -0.034
44 0.000 0.001 0.057 0.001 0.000 -0.017 0.181 1.173 0.108
45 0.000 0.001 0.065 0.000 0.000 -0.064 0.273 0.658 0.259
46 0.001 0.000 0.010 0.000 0.000 -0.009 0.168 0.042 0.042
49 0.000 0.000 -0.036 0.000 -0.001 -0.039 0.030 0.604 -0.018
50 0.001 0.000 0.069 0.000 0.000 -0.036 0.227 0.379 -0.178
51 0.001 0.001 -0.119 0.000 0.001 -0.004 0.132 -0.008 -0.036

Average 0.000 0.001 -0.003 0.000 0.000 -0.022 0.164 0.376 0.032
Std. Dev. 0.000 0.001 0.067 0.000 0.000 0.024 0.097 0.420 0.131

Table 6: Di�erence in calibration constants as computed by the analytical approach and the global �t
method (analytical�global �t).

5.1.2 Repeatability

In order to test the measurement precision, we repeated the calibration data-taking for each of the
8 BCAMs. The measurement precision involves placement of the BCAM in the roll cage (once per
calibration), the placement of the roll cage on the brass base in each of the BCAM orientations(8x per
calibration), the placement of the source block (twice per calibration), and the inherent resolution of the
camera.

Table 7 shows the results of the repeatability test on the calibration parameters. The standard deviation

Camera Pivot Point CCD Origin Rotation Cyl. Distortion
Number Px (mm) Py (mm) Pz (mm) tx (mrad) ty (mrad) F (mm) (mrad) Dx � 103 Dy � 103

41 0.009 0.000 -0.413 -0.005 -0.005 0.007 -0.149 0.200 0.000
42 -0.008 0.003 -1.386 0.002 -0.008 0.126 0.215 0.000 0.000
44 -0.010 0.003 -0.480 -0.001 -0.002 0.078 -0.055 0.000 0.000
45 -0.003 -0.008 0.383 0.001 -0.003 -0.036 0.124 0.000 0.000
46 0.001 -0.012 -0.579 -0.013 -0.011 0.027 0.022 0.200 0.000
49 -0.005 -0.007 0.454 0.003 -0.002 -0.059 -0.028 0.000 0.200
50 -0.006 -0.001 1.473 0.002 -0.002 -0.195 -0.202 0.200 0.000
51 -0.014 0.011 1.099 0.005 -0.004 -0.125 -0.067 0.000 0.000

Average -0.005 -0.001 0.069 -0.001 -0.005 -0.022 -0.017 0.075 0.025
Std. Dev. 0.007 0.007 0.952 0.006 0.003 0.105 0.137 0.104 0.071

Table 7: Di�erence in calibration constants between two sets of calibration data, analyzed by the analyt-
ical method.

represents the measurement precision, and it is of the same order as the software precision.

5.2 Accuracy: Freiburg Test

Although the BCAM calibration appeared to be internally consistent (precise and repeatable), there was
no way to test the accuracy of the devices without additional equipment. With this in mind, a set of
six calibrated BCAMs were sent to Freiburg to take advantage of the large CMM available there. The
Freiburg test is described in detail in ATLAS Note @@@. (This note may or may not exist, sent an email
to Karen asking her about it.)

5.2.1 The 4m test

There were two setups used at Freiburg. In the �rst, four cameras were arranged at three stations roughly
equidistant over a total span of 4.4m (see Figure 13). The outer two stations (EI and EO) each contained
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Figure 13: The Freiburg 4m test setup. Figure not drawn to scale.

a BCAM and two light sources (LED's), and these faced inward toward the middle station (EE). The
middle station had four sources, two facing each end station. From each end station, at least one source
at each of the other two stations could be seen.

The BCAMs sat on three ball mounts as described in Section 1, and the sources were mounted inde-
pendently. The positions of the three ball mounts for the BCAMs as well as some position information
for the sources were obtained from the Freiburg CMM in situ. Then, light centroids were obtained for
each source that could be viewed from each BCAM. With this information, two di�erent measurements
of sagitta could be derived.

The sagitta angle was de�ned as the angle between the two rays from a single BCAM pointing toward
two sources, one source nearer and the other farther away. We obtained two measurements of the
sagitta angle. The �mechanical� sagitta angle used the CMM measurements of the source positions and
BCAM three ball mount, our own independent source calibration, and the pivot point position from the
BCAM calibration. The �optical� sagitta angle was just the di�erence in bearing between the two rays
obtained from the BCAM measurements of the sources. The di�erence between these two sagitta angle
measurements we took to be our sagitta measurement error.

Each end BCAM could only see one EE source and both of the other end sources, which were given the
su�xes L and R to distinguish them. So, for instance, the EI BCAM might view one EE source and one
EO source. The sagitta in this case might be EI-EE-EOL or EI-EE-EOR. Neglecting the EE BCAMs,
there were thus four di�erent sagittas in the Freiburg 4m test (EI-EE-EOR, EI-EE-EOL, EO-EE-EIR,
and EO-EE-EIL). In addition, the EE station was placed in four di�erent vertical positions and also
rotated by three angles about the vertical axis (perpendicular to the surface of the granite table of the
CMM), and both CMM and BCAM measurements were taken in each con�guration. Some con�gurations
were duplicated for consistency, and including these, there were nine di�erent con�gurations measured
in the 4m test.

Each BCAM took around 16 measurements of each spot and averaged them for better precision. The
optical sagitta was then calculated from these spot positions and compared to the mechanical sagitta.
The di�erence between these two de�nitions of sagitta gives some measure of the accuracy of the BCAM
calibration. This is actually an overestimation of the BCAM calibration accuracy because the source
calibration accuracy is also involved, and this is unknown.

In the nine con�gurations we measured a total of 34 di�erent sagittas, both optical and mechanical.3 The
RMS di�erence between the 34 sagitta angles was 7.2�rad. This gives an upper limit on the calibration
accuracy of the BCAMs. In ATLAS, however, duplicate measurements of the same sagitta would be
averaged to obtain a more accurate assessment. Averaging over the four di�erent optical sagittas for each
test con�guration and comparing the result to the average mechanical sagitta yields a RMS sagitta angle
of 5.6�rad.

The absolute accuracy of the BCAMs could be estimated by comparing the bearing of a ray from the
BCAM to a given source, both optically and mechanically, as for the sagitta comparison. Averaging over
all BCAM�source pairs in all nine con�gurations yields an absolute position RMS error of 42�rad.

5.2.2 The 16m test

The other test at Freiburg was conducted over the longer baseline of 16m. In this test, there were four
stations (see Figure 14). Again, because of mirror calibration problems, only the outermost two BCAMs

3In one con�guration the EI BCAM could not see both sets of sources, so we only had two sagitta measurements for
that con�guration.
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Figure 14: The Freiburg 16m test setup. Figure not drawn to scale.

were used in this test, and they each observed the sources at the other three stations. The distances
from station EI to the other three were approximately 4.15m, 6.55m, and 16.34m. As in the 4m test,
one station (EE) was moved up and down and rotated for a total of 7 di�erent con�gurations. The RMS
error between the measurements of the stationary sources from run to run was around 2�rad. The RMS
error in the optical measurement as compared to the mechanical measurement for the moving sources
was also around 2�rad for the EO BCAM (12m from EO to the sources on EE), and around 6�rad for
the EI BCAM (4m from EI to EE). This is consistent with the RMS sagitta error observed in the 4m
test.

6 Conclusion

We have established a calibration procedure for the BCAMs used in the Atlas endcap muon polar align-
ment system, we have performed this procedure on a sample of BCAMs, and we have evaluated the
accuracy of the calibration at Freiburg. The calibration involves nine parameters per BCAM, and the
two methods of deriving these parameters agree with each other. The test at Freiburg shows that the
upper limit on the absolute position accuracy is 42�rad, and the tracking or relative accuracy has an
upper limit of 7�rad.

Appendix I

This appendix describes the e�ect of a small aperture on the seven parameters which describe a camera
in the absence of cylindrical distortions. First, we consider the image of a point source with known
location on a calibrated camera with no aperture. Figure 15 shows a simple lens�CCD camera. The dark
horizontal line connects the pivot point (the center of the lens) with the center of the CCD. An object
(or light source) at a range r a distance ho from this center line will appear as a focused image on the
image plane, a transverse distance (height) hf from the center line. If the CCD is inserted a distance �
behind the lens, then an (out-of-focus) image will appear on the CCD with a centroid height hc from the
center line. By similar triangles, it is apparent that

hc
�

=
ho
r

=
hf

�+ �
: (2)
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Figure 15: Simple lens�CCD camera.

hc=� = ho=r = hf= (�+ �). The location of the center line and the distance � are given from the
calibration constants directly, and ho comes from the location of the source with respect to the center
line.

If we add a small aperture, we have the situation diagrammed in Figure 16. The aperture is displaced

ho

hcb hf

Focused Image
Plane

α β

γ
Aperture CCD

Lens

r

θ
ω

Figure 16: Lens�CCD camera with an aperture.

from the lens by a longitudinal distance  and a transverse distance b. Since all rays from the object will
converge at the image plane, we obtain the angle !:

! =
hf � b

�+ � �  for ! � 1: (3)

Then, the image on the CCD will appear at a height

hc = b+ ! (�� ) : (4)

Using Equation 3 to remove the ! from Equation 4, we get

hc = b+ (hf � b)
�� 

�+ � �  : (5)

Removing hf by the use of Equation 2 yields

hc = b+

�
ho
r

(�+ �) � b
�

�� 
�+ � �  : (6)
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From the thin lens approximation of a lens with focal length f , we have the familiar lensmaker's formula

1

r
+

1

�+ �
=

1

f
(7)

which we can use to remove the � from Equation 6:

hc = b+

�
ho
r
� b

�+ �

�
�� 

1� = (�+ �)

hc = b+

�
ho
r
� b

�
1

f
� 1

r

��
�� 

1� 
�
1

f
� 1

r

�

hc = b+

�
ho + b

r
� b

f

�
�� 

1� 
f
+ 

r

hc = b+

2
4 ho + b� br=f
r + =

�
1� 

f

�
3
5 �� 
1� 

f

(8)

Making the substitutions h0o = ho + b, r0 = r + = (1� =f), and �0 = (�� ) = (1� =f), we get

hc =
h0o�

0

r0
+ b

�
1� r�0

r0f

�
:

Writing this entirely in terms of the primed coordinates, we have

hc =
h0o�

0

r0
+ b

�
1� r0�0

r0f
+

�0

r0f (1� =f)

�

hc =
h0o�

0

r0
+

b�0

(f � ) r0 + b

�
1� �0

f

�
:

If we de�ne h00o � h0o + b= (f � ) � ho + b [1 + = (f � )], then we have

hc =
h00o�

0

r0
+ b

�
1� �0

f

�
: (9)

Notice that the �rst part of this equation looks similar to Equation 2, except that the variables are
primed. Notice also that the primed variables depend only on their unprimed counterparts, the aperture
parameters b and , and the focal length f . Since the unprimed variables are directly related to the
camera calibration constants, this means that the aperture e�ects can be completely absorbed in a
reinterpretation of the calibration constants. For instance, as long as the longitudinal axis maintains its
direction, the change in ho can be interpreted as a transverse shift in the pivot point position. Likewise,
the change in r can be attributed to a shift in the longitudinal position of the pivot point. The change in
� can be interpreted in a change in the pivot point to CCD distance. Finally, the second term in Equation
9 can be absorbed in a CCD transverse shift. In other words, a camera with a small aperture is optically
equivalent to another lens�CCD camera with no aperture, so the seven parameters which describe that
camera should apply equally well to the camera with the aperture.

So far, we have assumed a point source, and we have stated without proof that the centroid of the out-
of-focus image follows a straight line from aperture to focus. Let us argue for the second statement �rst.
Assuming a point source, the light distribution across the aperture will be uniform for a distant source
as long as the aperture is fully illuminated. Since all rays follow straight lines to the focus spot, the light
distribution from aperture to focus follows some sort of a cone shape (Figure 17). The centroid of the
distribution at the aperture is therefore at the geometric middle of the aperture, and the centroid of the
focused spot is of course at the spot position itself. At any plane cutting through the cone of light which
is parallel to the aperture (i.e. the CCD), the centroid will be in the middle of the circle (or oval) of light
on that plane; thus, the centroid follows a straight-line path from the center of the aperture to the focus
(dotted lines in Figure 17).
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Figure 17: Light distributions from various point sources from apertures (bottom) to foci (top). The
three leftmost images show single point sources at di�erent source positions but a common
range. The dotted line follows the centroid of the light distribution on a plane parallel to
the aperture. The right image shows the light distribution for a combination of two point
sources. The centroids of the two sources individually are marked by the dotted lines, and the
composite centroid is given by the dashed line.

What about non-point sources? Any non-point source can be composed of up to a countably in�nite
number of point sources. How would this complex source behave? Consider a combination of two point
sources of equal intensities, but di�erent positions. The light distributions at the aperture are both
uniform, but their cones converge on di�erent spots at the image plane (Figure 17, right). The centroids
of each separate cone can be traced from the center of the aperture to their focal points, and the aggregate
centroid of both point sources at any point between aperture and image plane is just the midpoint between
the two separate centroid lines (dashed line in Figure 17). At the image plane, for eaxmple, the aggregate
centroid is the midpoint between the two image points. Since the sum of the two centroid lines is itself
a line, any two point sources create a centroid that behaves like that of a third, carefully chosen point
source. If the sources do not have equal intensities, then the aggregate centroid should be some linear
combinations of the two individual centroids, which still describes a straight line. The unfocused image
on the CCD may be ugly (for two point sources it might look like a fuzzy �gure-eight), but its centroid
behaves linearly.

This concept is extendable to any non-uniform source, composed of any countable number of point sources.
The centroid at the aperture should be in the geometrical center of the aperture, and the centroid at the
focused image is predictable from the source con�guration. Between them the centroid is composed of a
linear superposition of distinct point source centroids, and this superposition should map out a straight
line from center of aperture to image plane. Since that is exactly the same behavior as the centroid of
some carefully constructed point source, which obeys Equation 9, then we can safely say that the same
behavior holds for a generic source.

Appendix II

This appendix shows an alternate method of deriving the position and direction of the cylindrical distor-
tion vector. The method described in Section 4.3.1 has the advantage that it does not use the (imperfect)
knowledge of the relative source positions; however, the method described in this appendix uses only a
single BCAM orientation.

The distance between two images
�!
T1 and

�!
T2 on the CCD compared to the distance between corresponding

sources in the source block
�!
S1 and

�!
S2 shows the e�ect of the cylindrical distortion plus the overall

magni�cation. The largest ratio
����!T1 ��!T2��� = ����!S1 ��!S2��� of the six possibilities (cf. Figure 10a) happens for

the pair that lies closest in direction to the distortion vector. Since the sources are arranged roughly in a
square, one can always �nd two other pairs which lie at �45Æ from the vector

�!
T1��!T2. Using the relative
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lengths of these three vectors on the CCD, it is possible to reconstruct both the direction and magnitude
of the distortion vector

�!
D .

The length Lab of a vector on the CCD between points
�!
Ta and

�!
Tb is

Lab =
����!Ta ��!Tb + h��!

Ta ��!Tb
�
� �!D

i bD��� (10)

where the usual notation holds that a vector bA represents the unit vector in the direction of vector
�!
A .

Dividing the length Lab by the distance between the corresponding sources
�!
Sa and

�!
Sb yields the ratio

Rab =

������
�!
Ta ��!Tb����!Sa ��!Sb��� +

2
4 �!Ta ��!Tb����!Sa ��!Sb��� �

�!
D

3
5 bD

������ (11)

Rab =
���m dTa � Tb +m

h dTa � Tb � �!Di bD���
Rab � m (1 +D cos �ab) (12)

wherem is the magni�cation, which is unknown, D is the length of vector
�!
D , and �ab is the angle between

the vector
�!
Ta � �!Tb and �!D . If R0 represents this ratio for the vector lying closest to

�!
D , and the others

are denoted by R�, then we may write

R� = m [1 +D cos (�ab � 45Æ)]

R� = m [1 +D cos �ab cos 45
Æ �D sin �ab sin 45

Æ]

R� =
mp
2

�p
2 +D cos �ab �D sin �ab

�
: (13)

Adding R+ and R�, we get
R+ +R� =

p
2m

�p
2 +D cos �ab

�
(14)

and subtracting, we have
R+ �R� = �p2mD sin �ab: (15)

Subtracting 1/2 of Equation 14 from Equation 12 yields

mD cos �ab

�
1� 1p

2

�
: (16)

Adding the appropriately weighted squares of Equations 15 and 16 yields the product (mD)
2
. Since m

and D are both positive, we have mD. This may be inserted into Equation 15 to get sin �ab, and since
we know by construction that �ab < 45Æ, we take the arcsine to get �ab. Since we know both the product
mD and the angle �ab, we can solve Equation 12 for the magni�cation m. Finally, since we know both
the product mD and m, we solve for D directly. With the magnitude of

�!
D known, we can then solve

Equation 11 (or 10) for the direction of the distortion vector.

If the three vectors are separated by some known angles other than 45Æ, this method may still be used,
but the algebra is harder since all the

p
2 factors get replaced with sines and cosines of known angles,

and the cancellation is not so nice in general. In a computer program, of course, one would use the sines
and cosines of the known angles, rather than the factors of

p
2 everywhere, so this is not a problem.
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