Surface Mount Monolithic Amplifier DC-8 GHz

Product Features

- DC-8 GHz
- Single Voltage Supply
- · Internally Matched to 50 Ohm
- Unconditionally Stable
- · Low Performance Variation Over Temperature
- Transient Protected
- Protected By US Patent 6,943,629

Typical Applications

- Cellular/ PCS/ 3G Base Station
- CATV, Cable Modem & DBS
- Fixed Wireless & WLAN
- Microwave Radio & Test Equipment

CASE STYLE: WW107 PRICE: \$1.42 ea. QTY. (30)

+ RoHS compliant in accordance with EU Directive (2002/95/EC)

The +Suffix has been added in order to identify RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications.

General Description

ERA-1SM+ (RoHS compliant) is a wideband amplifier offering high dynamic range. It has repeatable performance from lot to lot. It is enclosed in a Micro-X package. ERA-1SM+ uses Darlington configuration and is fabricated using InGaP HBT technology. Expected MTBF is 5,800 years at 85°C case temperature.

simplified schematic and pin description

Function	Pin Number	Description	
RF IN	1	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	
RF-OUT and DC-IN	3	RF output and bias pin. DC voltage is present on this pin; therefore a DC blocking capacitor is necessary for proper operation. An RF choke is needed to feed DC bias without loss of RF signal due to the bias connection, as shown in "Recommended Application Circuit".	
GND	2,4	Connections to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.	

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 For detailed performance specs & shopping online see Mini-Circuits web site The Design Engineers Search Engine Provides ACTUAL Data Instantly From MINI-CIRCUITS At: www.minicircuits.com

Parameter		Min.	Тур.	Max.	Units	Cpk
Frequency Range		DC		6	GHz	
Gain	f=0.1 GHz	11.4	12.3	12.9	dB	≥ 1.5
	f=1 GHz		12.1			
	f=2 GHz	10.3	11.8	12.9		
	f=3 GHz		10.9			
	f=4 GHz		9.7			
	f=6 GHz		7.9			
	f=8 GHz		8.2			
Magnitude of Gain Variation versus Temperature	f=0.1 GHz		.0012	.0025	dB/°C	
(values are negative)	f=1 GHz		.0015	.003		
	f=2 GHz		.0017	.0035		
	f=3 GHz		.002	.004		
	f=4 GHz		.002	.004		
	f=6 GHz		.0022	.005		
	f=8 GHz		.0019	.005		
nput Return Loss	f=0.1 GHz		30		dB	
	f=2 GHz		25			
	f=3 GHz		23			
	f=4 GHz		23			
	f=6 GHz		18			
	f=8 GHz		16			
Dutput Return Loss	f=0.1 GHz		26		dB	
	f=2 GHz		21			
	f=3 GHz		16			
	f=4 GHz		15			
	f=6 GHz		15			
	f=8 GHz		15			
Reverse Isolation	f=2 GHz	14	17		dB	
Dutput Power @ 1 dB compression	f=0.1 GHz		12		dBm	≥ 1.33
	f=1 GHz		12			
	f=2 GHz	10	12			
	f=3 GHz		12			
	f=4 GHz		12			
	f=6 GHz		10.5			
	f=8 GHz		8			
Saturated Output Power	f=0.1 GHz		13		dBm	
at 3dB compression)	f=2 GHz		13			
	f=4 GHz		12.5			
	f=6 GHz		11			
	f=8 GHz		10			
Output IP3	f=0.1 GHz	24	28		dBm	≥ 1.33
	f=1 GHz	24	28			
	f=2 GHz	23	28			
	f=4 GHz	20	25			
Noise Figure	f=0.1 GHz		4.3	5	dB	≥ 1.33
Noise rigule	f=2 GHz		4.3	5.3		
	f=4 GHz		4.5	5.5		
	f=6 GHz		4.9			
	f=8 GHz		5.5			
Group Delay	f=2 GHz		70		psec	L
Recommended Device Operating Current			40		mA	
Device Operating Voltage		3.2	3.4	3.6	V	≥ 1.5
		5.2	-2.0	0.0	mV/°C	21.5
Device Voltage Variation vs. Temperature at 40mA			÷			
Device Voltage Variation vs. Current at 25°C			9.4		mV/mA	
Thermal Resistance, junction-to-case ¹			183		°C/W	L

Electrical Specifications at 25°C and 40mA, unless noted

Absolute Maximum Ratings

Parameter	Ratings
Operating Temperature*	-45°C to 85°C
Storage Temperature	-65°C to 150°C
Operating Current	75mA
Power Dissipation	330mW
Input Power	15dBm

Note: Permanent damage may occur if any of these limits are exceeded. These ratings are not intended for continuous normal operation. ¹Case is defined as ground leads. ^{*}Based on typical case temperature rise 5°C above ambient.

Mini-Circuits

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 For detailed performance specs & shopping online see Mini-Circuits web site The Design Engineers Search Engine Provides ACTUAL Data Instantly From MINI-CIRCUITS At: www.minicircuits.com

Product Marking

Additional Detailed Technical Information

Additional information is available on our web site. To access this information enter the model number on our web site home page.

Performance data, graphs, s-parameter data set (.zip file)

Case Style: WW107

Plastic micro-x, .085 body diameter, lead finish: tin/silver/nickel

Tape & Reel: F4

Suggested Layout for PCB Design: PL-075

Evaluation Board: TB-408-1+

Environmental Ratings: ENV08T2

Recommended Application Circuit

Test Board includes case, connectors, and components (in bold) soldered to PCB

R BIAS				
Vcc	"1%" Res. Values (ohms) for Optimum Biasing			
7	90.9			
8	113			
9	137			
10	162			
11	187			
12	215			
13	237			
14	261			
15	287			
16	309			
17	332			
18	357			
19	383			
20	412			

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 For detailed performance specs & shopping online see Mini-Circuits web site The Design Engineers Search Engine Provides ACTUAL Data Instantly From MINI-CIRCUITS At: www.minicircuits.com

RF/IF MICROWAVE COMPONENTS

ESD Rating

Human Body Model (HBM): Class 1B (500 v to < 1,000 v) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (< 100 v) in accordance with ESD STM 5.2 - 1999

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDECJ-STD-020C

No.	Test Required	Condition	Standard	Quantity
1	Visual Inspection	Low Power Microscope Magnification 40x	MIP-IN-0003 (MCT spec)	45 units
2	Electrical Test	Room Temperature	SCD (MCL spec)	45 units
3	SAM Analysis	Less than 10% growth in term of delamination	J-Std-020C (Jedec Standard)	45 units
4	Moisture Sensitivity Level 1	Bake at 125°C for 24 hours Soak at 85°C/85%RH for 168 hours Reflow 3 cycles at 260°C peak	J-Std-020C (Jedec Standard)	45 units

MSL Test Flow Chart

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 For detailed performance specs & shopping online see Mini-Circuits web site The Design Engineers Search Engine Provides ACTUAL Data Instantly From MINI-CIRCUITS At: www.minicircuits.com

