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INTRODUCTION

VMEbus is the most popular 16/32-bit backplane bus. Its use of the Eurocard format, its high
performance, and its versatility are some of the reasons that it appeals to a wide range of users.
The designer friendly and user friendly style of its specification offers useful advice and helps
ensure compatibility between VMEbus products.

The following VMEbus specification is a result of both IEEE P1014 Standard Committee and the
IEC 47b Standards Committee work. The version of the VMEbus specification presented here
(Revision C.1) has been approved by the IEEE P1014 Standard Committee as draft 1.2. It is
presently undergoing the final stages of approval in both the IEEE and the IEC. While the final
IEEE 1014 and IEC 821 BUS standards are not expected to differ significantly from Revision C.1,
the publisher of this document does not guarantee that those standards will not differ at all. This
document is being published to provide the VMEbus community with an up-to-date professional
and readable document in the hope of promoting compatibility between VMEbus products and
encouraging the widespread use of VMEbus.
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CHAPTER 1

INTRODUCTION TO THE VMEbus SPECIFICATION

1.1 VMEbus SPECIFICATION OBJECTIVES

The VMEbus specification defines an interfacing system used to interconnect data processing,
data storage, and peripheral control devices in a closely coupled hardware configuration. The
system has been conceived with the following objectives:

a. To allow communication between devices on the VMEbus without disturbing the internal
activities of other devices interfaced to the VMEbus.

b. To specify the electrical and mechanical system characteristics required to design devices
that will reliably and unambiguously communicate with other devices interfaced to the
VMEbus.

c. To specify protocols that precisely define the interaction between the VMEbus and devices
interfaced to it.

d. To provide terminology and definitions that describe system protocols.

e. To allow a broad range of design latitude so that the designer can optimize cost and/or
performance without affecting system compatibility.

f. To provide a system where performance is primarily device limited, rather than system
interface limited.

1.2 VMEbus INTERFACE SYSTEM ELEMENTS

1.2.1 Basic Definitions

The VMEbus structure can be described from two points of view: its mechanical structure and
its functional structure. The mechanical specification describes the physical dimensions of
subracks, backplanes, front panels, plug-in boards, etc. The VMEbus functional specification
describes how the bus works, what functional modules are involved in each transaction, and
the rules which govern their behavior. This section provides informal definitions for some basic
terms used to describe both the mechanical and the functional structure of the VMEbus.

1.2.1.1 Terms Used To Describe The VMEbus Mechanical Structure

VMEbus BACKPLANE -- A printed circuit (PC) board with 96 pin connectors and signal paths
that bus the connector pins. Some VMEbus systems have a single PC board, called the J1
backplane. It provides the signal paths needed for basic operation. Other VMEbus systems
also have an optional second PC board, called a J2 backplane. It provides the additional 96
pin connectors and signal paths needed for wider data and address transfers. Still others have



a single PC board that provides the signal conductors and connectors of both the J1 and J2
backplanes.

BOARD -- A printed circuit (PC) board, its collection of electronic components, and either one
or two 96 pin connectors that can be plugged into VMEbus backplane connectors.

SLOT -- A position where a board can be inserted into a VMEbus backplane. If the VMEbus
system has both a J1 and a J2 backplane (or a combination J1/J2 backplane) each slot
provides a pair of 96 pin connectors. If the system has only a J1 backplane, then each slot
provides a single 96 pin connector.

SUBRACK -- A rigid framework that provides mechanical support for boards inserted into the
backplane, ensuring that the connectors mate properly and that adjacent boards do not contact
each other. It also guides the cooling airflow through the system, and ensures that inserted
boards do not disengage themselves from the backplane due to vibration or shock.

1.2.1.2 Terms Used To Describe The VMEbus Functional Structure

Figure 1.1 shows a simplified block diagram of the functional structure, including the VMEbus
signal lines, backplane interface logic, and functional modules.



Figure 1-1.  System Elements Defined by this Document

BACKPLANE INTERFACE LOGIC -- Special interface logic that takes into account the
characteristics of the backplane: its signal line impedance, propagation time, termination
values, etc. The VMEbus specification prescribes certain rules for the design of this logic
based on the maximum length of the backplane and its maximum number of board slots.

FUNCTIONAL MODULE -- A collection of electronic circuitry that resides on one VMEbus
board and works together to accomplish a task.

DATA TRANSFER BUS -- One of the four buses provided by the VMEbus backplane. The
Data Transfer Bus allows MASTERS to direct the transfer of binary data between themselves
and SLAVES. (Data Transfer Bus is often abbreviated DTB.)

DATA TRANSFER BUS CYCLE -- A sequence of level transitions on the signal lines of the
DTB that result in the transfer of an address or an address and data between a MASTER and
a SLAVE. The Data Transfer Bus cycle is divided into two portions, the address broadcast, and
then zero or more data transfers. There are 34 types of Data Transfer Bus cycles. They are
defined later in this chapter.



MASTER -- A functional module that initiates DTB cycles in order to transfer data between
itself and a SLAVE module.

SLAVE -- A functional module that detects DTB cycles initiated by a MASTER and, when
those cycles specify its participation, transfers data between itself and the

LOCATION MONITOR -- A functional module that monitors data transfers over the DTB in
order to detect accesses to the locations it has been assigned to watch. When an access to
one of these assigned locations occurs, the LOCATION MONITOR generates an on-board
signal.

BUS TIMER -- A functional module that measures how long each data transfer takes on the
DTB and terminates the DTB cycle if a transfer takes too long. Without this module, if the
MASTER tries to transfer data to or from a non-existent SLAVE location it might waft forever.
The BUS TIMER prevents this by terminating the cycle.

PRIORITY INTERRUPT BUS -- One of the four buses provided by the VMEbus backplane.
The Priority Interrupt Bus allows INTERRUPTER modules to send interrupt requests to
INTERRUPT HANDLERS.

INTERRUPTER -- A functional module that generates an interrupt request on the Priority
Interrupt Bus and then provides STATUS/ID information when the INTERRUPT HANDLER
requests it.

INTERRUPT HANDLER -- A functional module that detects interrupt requests generated by
INTERRUPTERS and responds to those requests by asking for STATUS/ID information.

DAISY-CHAIN --  A special type of VMEbus signal line that is used to propagate a signal level
from board to board, starting with the first slot and ending with the last slot. There are four bus
grant daisy-chains and one interrupt acknowledge daisy-chain on the VMEbus.

JACK DAISY-CHAIN DRIVER -- A functional module which activates the interrupt
acknowledge daisy-chain whenever an INTERRUPT HANDLER acknowledges an interrupt
request. This daisy-chain ensures that only one INTERRUPTER will respond with its
STATUS/ID when more than one has generated an interrupt request.

ARBITRATION BUS -- One of the four buses provided by the VMEbus backplane. This bus
allows an ARBITER module and several REQUESTER modules to coordinate use of the DTB.

REQUESTER -- A functional module that resides on the same board as a MASTER or
INTERRUPT HANDLER and requests use of the DTB whenever its MASTER or INTERRUPT
HANDLER needs it.

ARBITER -- A functional module that accepts bus requests from REQUESTER modules and
grants control of the DTB to one REQUESTER at a time.



UTILITY BUS -- One of the four buses provided by the VMEbus backplane. This bus includes
signals that provide periodic timing and coordinate the power-up and powerdown of VMEbus
systems.

SYSTEM CLOCK DRIVER -- A functional module that provides a 16 MHz timing signal on the
Utility Bus.

SERIAL CLOCK DRIVER -- A functional module that provides a periodic timing signal that
synchronizes operation of the VMSbus. (Although the VMEbus specification defines a SERIAL
CLOCK DRIVER for use with the VMSbus, and although it reserves two backplane signal lines
for use by that bus, the VMSbus protocol is completely independent of the VMEbus). Timing
specifications for the SERIAL CLOCK DRIVER are given in Appendix C.

POWER MONITOR MODULE -- A functional module that monitors the status of the primary
power source to the VMEbus system, and signals when that power has strayed outside the
limits required for reliable system operation. Since most systems are powered by an AC
source, the POWER MONITOR is typically designed to detect drop-out or brown-out conditions
on AC lines.

SYSTEM CONTROLLER BOARD -- A board which resides in slot 1 of a VMEbus backplane
and has a SYSTEM CLOCK DRIVER, an ARBITER, an JACK DAISY-CHAIN DRIVER, and a
BUS TIMER. Some also have a SERIAL CLOCK DRIVER, a POWER MONITOR or both.

1.2.1.3 Types Of Cycles On The VMEbus.

READ CYCLE --A DTB cycle used to transfer 1, 2, 3, or 4 bytes from a SLAVE to a MASTER.
The cycle begins when the MASTER broadcasts an address and an address modifier. Each
SLAVE captures the address modifier and address, and checks to see if it is to respond to the
cycle. If so, it retrieves the data from its internal storage, places it on the data bus and
acknowledges the transfer. The MASTER then terminates the cycle.

WRITE CYCLE -- A DTB cycle used to transfer 1, 2, 3, or 4 bytes from a MASTER to a
SLAVE. The cycle begins when the MASTER broadcasts an address and address modifier
and places data on the DTB. Each SLAVE captures the address and address modifier and
checks to see if it is to respond to the cycle. If so, it stores the data and then acknowledges the
transfer. The MASTER then terminates the cycle.

BLOCK READ CYCLE -- A DTB cycle used to transfer a block of 1 to 256 bytes from a
SLAVE to a MASTER. This transfer is done using a string of 1, 2, or 4-byte data transfers.
Once the block transfer is started, the MASTER does not release the DTB until all of the bytes
have been transferred. It differs from a string of read cycles in that the MASTER broadcasts
only one address and address modifier (at the beginning of the cycle). Then the SLAVE
increments this address on each transfer so that the data for the next transfer is retrieved from
the next higher location.

BLOCK WRITE CYCLE -- A DTB cycle used to transfer a block of 1 to 256 bytes from a
MASTER to a SLAVE. The block write cycle is very similar to the block read cycle. It uses a



string of 1, 2, or 4-byte data transfers and the MASTER does not release the DTB until all of
the bytes have been transferred. It differs from a string of write cycles in that the MASTER
broadcasts only one address and address modifier (at the beginning of the cycle). Then the
SLAVE increments this address on each transfer so that the data from the next transfer is
stored in the next higher location.

READ-MODIFY-WRITE CYCLE -- A DTB cycle that is used to both read from, and write to a
SLAVE location without permitting any other MASTER to access that location. This cycle is
most useful in multiprocessing systems where certain memory locations are used to provide
semaphore functions.

ADDRESS-ONLY CYCLE -- A DTB cycle that consists of an address broadcast, but no data
transfer. SLAVES do not acknowledge ADDRESS-ONLY cycles and MASTERS terminate the
cycle without waiting for an acknowledgment.

INTERRUPT ACKNOWLEDGE CYCLE -- A DTB cycle, initiated by an INTERRUPT
HANDLER, that reads a STATUS/ID from an INTERRUPTER. An INTERRUPT HANDLER
generates this cycle whenever it detects an interrupt request from an INTERRUPTER and it
has control of the DTB.

1.2.2 Basic VMEbus Structure

The VMEbus interface system consists of backplane interface logic, four groups of signal lines
called "buses", and a collection of "functional modules" which can be configured as required.
The functional modules communicate with each other using the backplane signal lines.

The "functional modules" defined in this document are used as vehicles for discussion of the
bus protocol, and need not be considered a constraint to logic design. For example, the
designer might choose to design logic which interacts with the VMEbus in the manner
described, but uses different on-board signals, or monitors other VMEbus signals. VMEbus
boards might be designed to include any combination of the functional modules defined by this
document.

The VMEbus functional structure can be divided into four categories. Each consists of a bus
and its associated functional modules which work together to perform specific duties. Figure
1-2 shows the VMEbus functional modules and buses. Each category is briefly summarized
below.



Figure 1-2.  Functional Modules and Busses Defined by this Document

Data Transfer -- Devices transfer data over the Data Transfer Bus (DTB), which contains data
and address pathways and associated control signals. Functional modules called MASTERS,

SLAVES, INTERRUPTERS, and INTERRUPT HANDLERS use the DTB to transfer data
between each other. Two other modules, called a BUS TIMER and an JACK DAISY-CHAIN

DRIVER also assist them in this process.

DTB Arbitration -- Since a VMEbus system can be configured with more than one MASTER
or INTERRUPT HANDLER, a means is provided to transfer control of the DTB between them
in an orderly manner and to guarantee that only one controls the DTB at a given time. The
Arbitration Bus modules (REQUESTERS and ARBITER) coordinate the control transfer.

Priority Interrupt -- The priority interrupt capability of the VMEbus provides a means by which
devices can request service from an INTERRUPT HANDLER. These interrupt requests can be
prioritized into a maximum of seven levels. INTERRUPTERS and INTERRUPT HANDLERS
use the Priority Interrupt Bus signal lines.

Utilities -- Periodic clocks, initialization, and failure detection are provided by the Utility Bus. It
includes two clock lines, a system reset line, a system fail line, an AC fail line, and a serial data
line.

1.3 VMEbus SPECIFICATIONS DIAGRAMS

As aids to defining or describing VMEbus operation, several types of diagrams are used,
including:



a. Timing diagrams that show the timing relationships between signal transitions. The times
involved will have minimum and/or maximum limits associated with them. Some of the times
specified on these diagrams specify the behavior of the backplane interface logic, while
other times specify the interlocked behavior of the functional modules.

b. Sequence diagrams that are similar to a timing diagram but show only the interlocked timing
relationships of the functional modules. This diagram is intended to show a sequence of
events, rather than to specify the times involved. For example, a sequence diagram might
indicate that module A cannot generate signal transition B until it detects module C’s
generation of signal transition D.

c. Flow diagrams that show a stream of events as they would occur during a VMEbus
operation. The events are stated in words and result from interaction of two or more
functional modules. The flow diagram describes VMEbus operations in a sequential manner
and, at the same time, shows interaction of the functional modules.

1.4 SPECIFICATION TERMINOLOGY

To avoid confusion, and to make very clear what the requirements for compliance are, many of
the paragraphs in this document are labeled with keywords that indicate the type of information
they contain. The keywords are listed below:

RULE
RECOMMENDATION
SUGGESTION
PERMISSION
OBSERVATION

Any text not labeled with one of these keywords describes the VMEbus structure or operation.
It is written in either a descriptive or a narrative style. These keywords are used as follows:

RULE chapter.number:
Rules form the basic framework of the VMEbus specification They are sometimes expressed in
text form and sometimes in the form of figures, tables, or drawings. All VMEbus rules MUST be
followed to ensure compatibility between VMEbus designs. Rules are characterized by an
imperative style. The upper-case words MUST and MUST NOT are reserved exclusively for
stating rules in this document and are not used for any other purpose.

RECOMMENDATION chapter.number:
Wherever a recommendation appears, designers would be wise to take the advice given.
Doing otherwise might result in some awkward problems or poor performance. While VMEbus
has been designed to support high performance systems, it is possible to design a VMEbus
system that complies with all the rules, but has abysmal performance. In many cases, a
designer needs a certain level of experience with VMEbus in order to design boards that
deliver top performance. Recommendations found in this document are based on this kind of
experience, and are provided to designers to speed their traversal of the learning curve.

SUGGESTION chapter.number:



In the VMEbus specification, a suggestion contains advice which is helpful but not vital. The
reader is encouraged to consider the advice before discarding it. Some design decisions that
need to be made in designing VMEbus boards are difficult until experience has been gained
with the VMEbus. Suggestions are included to help a designer who has not yet gained this
experience. Some suggestions have to do with designing boards that can be easily
reconfigured for compatibility with other boards, or with designing the board to make the job of
system debugging easier.

PERMISSION chapter.number:
In some cases a VMEbus rule does not specifically prohibit a certain design approach, but the
reader might be left wondering whether that approach might violate the spirit of the rule, or
whether it might lead to some subtle problem. Permissions reassure the reader that a certain
approach is acceptable, and will cause no problems. The uppercase word MAY is reserved
exclusively for stating permissions in this document and is not used for any other purpose.

OBSERVATION chapter.number:
Observations do not offer any specific advice. They usually follow naturally from what has just
been discussed. They spell out the implications of certain VMEbus rules and bring attention to
things that might otherwise be overlooked. They also give the rationale behind certain rules, so
that the reader understands why the rule must be followed.

1.4.1 Signal Line States

The VMEbus specification describes its protocol in terms of levels and transitions on bus lines.

A signal line is always assumed to be in one of two levels or in transition between these levels.
Whenever the term "high" is used, it refers to a high TTL voltage level. The term "low"" refers
to a low TTL voltage level. A signal line is ""in transition’" when its voltage is moving between
these levels. (See Chapter 6 for voltage thresholds used on the VMEbus.)

There are two possible transitions which can appear on a signal line, and these are called
“edges”. A rising edge is the time during which a signal level makes its transition from a low
level to a high level. The falling edge is the time during which a signal level makes its transition
from a high level to a low level.

Some bus specifications prescribe maximum or minimum rise and fall times for these edges.
The problem with doing this is that board designers have very little control over these times. If
the backplane is heavily loaded, the rise and fall times will be long. If it is lightly loaded" these
times might be short. Even if designers know what the maximum and minimum loading will be,
they still need to spend time in the lab, experimenting to find out which drivers will provide the
needed rise and fall times.

In fact, rise and fall times are the result of a complex set of interactions involving the signal line
impedances of the backplane, its terminations, the source impedance of the drivers, and the
capacitive loading of the signal line. In order to trade off all of these factors the board designer
would have to study transmission line theory, as well as certain specific parameters of drivers
and receivers which are not normally found in most manufacturers data sheets.



Recognizing all of this, the VMEbus standard doesn’t specify rise and fall times. Instead, it
specifies the electrical characteristics for drivers and receivers and suggests how to design the
backplane. It also tells designers how the worst case bus loading will affect the propagation
delay of these drivers so that they can ensure that the VMEbus timing is met before building a
board. If VMEbus designers follow these propagation delay guidelines, their boards will
operate reliably with other VMEbus compatible boards under worst case conditions.

1.4.2 Use Of The Asterisk (*)

To help define usage, signal mnemonics have an asterisk suffix where required:

a. An asterisk (*) following the signal name of signals which are level significant denotes that
the signal is true or valid when the signal is low.

b. An asterisk (*) following the signal name of signals which are edge significant denotes that
the actions initiated by that signal occur on a high to low transition.

OBSERVATION 1.1:
The asterisk is inappropriate for the asynchronously running clock lines SYSCLK and
SERCLK. There is no fixed phase relationship between these clock lines and other VMEbus
timing.

1.5 PROTOCOL SPECIFICATION

There are two layers of VMEbus protocol. The lowest VMEbus layer called the backplane
access layer, is composed of the backplane interface logic, the Utility Bus modules, and the
Arbitration Bus modules. The VMEbus’s data transfer layer, is composed of the Data Transfer
Bus and Priority Interrupt Bus modules. Figure 1-2 shows this layering.

OBSERVATION 1.2:
The signal lines used by the data transfer layer modules form a special class because they are
driven by different modules at different times. They are driven with line drivers that can be
turned on and off at each board, based upon signals generated in the backplane access layer.
It is very important that their turn-on and turn-off times be carefully controlled to prevent two
drivers from attempting to drive the same signal line to different levels. Special timing diagram
notation is used in this document to specify their turn-on and turn-off times. It is shown in
Figure 1-3.

There are two basic kinds of protocol used on the VMEbus: closed loop protocols and open
loop protocols. Closed loop protocols use interlocked bus signals while open loop protocols
use broadcast bus signals.



Figure 1-3.  Signal Timing Notation

1.5.1 Interlocked Bus Signals

An interlocked bus signal is sent from a specific module to another specific module. The signal
is acknowledged by the receiving module. An interlocked relationship exists between the two
modules until the signal is acknowledged.

For example, an INTERRUPTER can send an interrupt request which is answered later with
an interrupt acknowledge signal (no time limit is prescribed by the VMEbus specification). The
INTERRUPTER doesn’t remove the interrupt request until the INTERRUPT HANDLER
acknowledges it.

Interlocked bus signals coordinate internal functions of the VMEbus system, as opposed to
interacting with external stimuli. Each interlocked signal has a source module and a destination
module within the VMEbus system.

The address strobe and data strobes are especially important interlocking signals. They are
interlocked with the data transfer acknowledge and bus error signals and coordinate the
transfer of addresses and data which are the basis for all information flow between modules in
the data transfer layer.

1.5.2 Broadcast Bus Signal

A module generates a broadcast signal in response to an event. There is no protocol for
acknowledging a broadcast signal. Instead, the broadcast is maintained for a minimum
specified time, long enough to assure that all appropriate modules detect the signal. Broadcast



signals might be activated at any time, irrespective of any other activity taking place on the
bus. They are each sent over a dedicated signal line. Some examples are the system reset
and AC failure lines. These signal lines are not sent to any specific module, but announce
special conditions to all modules.

1.6 SYSTEM EXAMPLES AND EXPLANATIONS

A protocol specification describes, in detail, the behavior of the various functional modules. It
discusses how a module responds to a signal without saying where the signal came from.
Because of this, a protocol specification does not give the reader a complete picture of what is
going on over the bus. To help the reader, the VMEbus specification provides examples of
typical VMEbus operations. Each example shows one possible sequence of events: other
sequences are also possible. In providing these examples, there is the danger that readers will
assume that the sequence shown in the example is the only legal one. To help readers avoid
this trap, all examples are given in a narrative style, using the present tense. This is in contrast
to the imperative style used when giving rules for compliance with the VMEbus specification.



CHAPTER 2

DATA TRANSFER BUS

2.1 INTRODUCTION

The VMEbus includes a high speed asynchronous parallel Data Transfer Bus (DTB). Figure 2-
1 shows a typical VMEbus system, including all of the DTB functional module types.
MASTERS use the DTB to select storage locations provided by SLAVES, and to transfer data
to or from those locations. Some MASTERS and SLAVES use all of the DTB lines, while
others use only a subset.

LOCATION MONITORS monitor data transfers between MASTERS and SLAVES. When an
access is done to one of the byte location(s) that it monitors, a LOCATION MONITOR
generates an on-board signal. For example, it might signal its on-board processor by means of
an interrupt request. In such a configuration, if processor board A writes into a location of the
global VMEbus memory that is monitored by processor B’s LOCATION MONITOR, processor
B will be interrupted.

After a MASTER initiates a data transfer cycle it waits for the responding SLAVE to respond
before finishing the cycle. The asynchronous definition of the VMEbus allows a SLAVE to take
as long as it needs to respond. If a SLAVE fails to respond because of some malfunction, or if
the MASTER accidentally addresses a location where there is no SLAVE, the BUS TIMER
intervenes, allowing the cycle to be terminated.

2.2 DATA TRANSFER BUS LINES

The Data Transfer Bus lines can be grouped into three categories:

Addressing Lines Data Lines Control Lines
A01 -A31 D00-D31 AS*
AM0-AM5 DS0*

DS0* DS1 *
DS1 * BERR*

LWORD* DTAC K*
WRITE*



Figure 2-1.  Data Transfer Bus Functional Block Diagram

OBSERVATION 2.1:
The two data strobes (DS0* and DS1*) serve a dual function:

a. The levels of these two data strobe lines are used to select which byte(s) are accessed.

b. The edges of the data strobes are also used as timing signals which coordinate the transfer
of the data between the MASTER and SLAVE.

2.2.1 Addressing Lines

The smallest addressable unit of storage is the byte location. Each byte location is assigned a
unique binary address. Each byte location can be assigned to one of four categories,
according to the the least significant two bits of its address. (See Table 2-1)

Table 2-1. The Four Categories Of Byte Locations

Category Byte address
BYTE(0) XXXXXX…XXXXXX00
BYTE(1) XXXXXX…XXXXXX01
BYTE(2) XXXXXX…XXXXXX10
BYTE(3) XXXXXX…XXXXXX11

A set of byte locations whose addresses differs only in the two least significant bits, is called a
4-byte group or a BYTE(0-3) group. Some, or all of the bytes in a 4-byte group can be
accessed simultaneously by a single DTB cycle.



MASTERS use address lines A02-A31 to select which 4-byte group will be accessed. Four
additional lines (DS1*, DS0*, A01, and LWORD*) are then used to select which byte
location(s) within the 4-byte group are accessed during the data transfer. Using these four
lines, a MASTER can access 1, 2, 3, or 4-byte locations simultaneously, depending upon the
type of cycle. The 34 possible cycle types with the corresponding levels of these four lines are
listed in Table 2-2 .

OBSERVATION 2.2:
In cycles where both data strobes are driven low, one data strobe might go low slightly after
the other. In this case the signal levels indicated in Table 2-2 are the final levels.

OBSERVATION 2.3:
Given the 4 signal line levels shown in Table 2-2, there are 16 possible combinations of levels.
Of these 16, there are two illegal combinations that are not used (see Table in RULE 2.1).

RULE 2.1:
MASTERS MUST NOT generate DTB cycles where the final levels of DS0*, DS1*, A01, and
LWORD* are either of the following illegal combinations:

DS1*  DS0* A01 LWORD*
high low high  low
low high high low

PERMISSION 2.1:
MASTERS that generate BYTE(1-2) READ or BYTE(1-2) WRITE cycles MAY generate either
of the two combinations described in RULE 2.1 briefly as transition states (i.e. while one data
strobe has fallen, but the other has not).

OBSERVATION 2.4:
Whenever a MASTER drives LWORD* low and A01 high it drives both data strobes low. (Any
other combination is illegal.) VMEbus board designers can take advantage of this to simplify
the logic on SLAVES.

PERMISSION 2.2:
To simplify the required logic, SLAVES which respond to BYTE(1-2) READ and BYTE(1-2)
WRITE cycles MAY be designed without logic to distinguish between these cycles and the two
illegal cycles described in RULE 2.1.

Table 2-2. Signal Levels Used To Select Which Byte Location(s)
Are Accessed During A Data Transfer

Type of cycle DS1 * DS0* A01 LWORD*
ADDRESS-ONLY high high <----Notel----->

Single even byte transfers
BYTE(0) READ or WRITE low high low high
BYTE(2) READ or WRITE low high high high

Single odd byte transfers



BYTE(1 ) READ or WRITE high low low high
BYTE(3) READ or WRITE high low high high

Double byte transfers
BYTE(0-1) READ or WRITE low low low high
BYTE(2-3) READ or WRITE low low high high

Quad byte transfers
BYTE(0-3) READ or WRITE low low low low

Single byte block transfers
SINGLE BYTE BLOCK READ or WRITE <------Note 2------> high

Double byte block transfers
DOUBLE BYTE BLOCK READ or WRITE low low Note 3 high

Quad byte block transfers
QUAD BYTE BLOCK READ or WRITE low low low low

Single byte RMW transfers
BYTE(0) READ-MODIFY-WRITE low high low high
BYTE(1) READ-MODIFY-WRITE high low low high
BYTE(2) READ-MODIFY-WRITE low high high high
BYTE(3) READ-MODIFY-WRITE high low high high

Double byte RMW transfers
BYTE(0-1) READ-MODIFY-WRITE low low low high
BYTE(2-3) READ-MODIFY-WRITE low low high high

Quad byte RMW transfers
BYTE(0-3) READ-MODIFY-WRITE low low low low

Unaligned transfers
BYTE(0-2) READ or WRITE low high low low
BYTE(1-3) READ or WRITE high low low low
BYTE(1-2) READ or WRITE low low high low

Table 2-2. Signal Levels Used To Select Which Byte Location(s)
Are Accessed During A Data Transfer

Notes:

1. During ADDRESS-ONLY cycles, both data strobes are maintained high, but the A01 and
LWORD* lines might be either high or low.

2. During single byte block transfers, the two data strobes are alternately driven low. Either
data strobe might be driven low on the first transfer. If the first accessed byte location is
BYTE(0) or BYTE(2)" then DS1* is driven low first. If the first accessed byte location is
BYTE(1) or BYTE(3), then DS0* is driven low first. A01 is valid only on the first data transfer
(i.e. until the SLAVE drives DTACK* or BERR* low the first time) and might be either high or
low depending upon which byte the single byte block transfer begins with. If the first byte
location is BYTE(0) or BYTE(1), then A01 is low. If the first byte location is BYTE(2) or
BYTE(3), then A01 is high.

An example of a Single byte block transfer cycle which starts with BYTE(2) is given below:



 DS1* DS0* A01 LWORD*
First data transfer: BYTE(2) low high high high

BYTE(3) high low X X
BYTE(0) low high X X
BYTE(1) high low X X

Last data transfer: BYTE(2) low high X X

X=high or low.

3. During a Double byte block transfer, the two data strobes are both driven low on each data
transfer. A01 is valid only on the first data transfer (i.e. until the SLAVE drives DTACK* or
BERR* low the first time) and might be either high or low depending upon what double byte
group the double byte block transfer begins with. If the first double byte group is BYTE(0-1),
then A01 is low. If the first double byte group is BYTE(2-3), then A01 is high.

An example of a Double byte block transfer cycle which starts with BYTE(2-3) is given below:

DS1* DS0* A01 LWORD*
First data transfer BYTE(2-3) low low high high

BYTE(0-1) low low X X
BYTE(2-3) low low X X

Last data transfer BYTE(0-1 ) low low X X

X = high or low.

2.2.2 Address Modifier Lines

There are 6 address modifier lines. They allow the MASTER to pass additional binary
information to the SLAVE during data transfers. Table 2-3 lists all of the 64 possible address
modifier (AM) codes and classifies each into one of three categories:

Defined
Reserved

User defined

The defined address modifier codes can be further classified into three categories:

Short addressing AM codes indicate that address lines A02-A15 are being used to select a
BYTE(0-3) group.

Standard addressing AM codes ,indicate that address lines A02-A23 are being used to select a
BYTE(0-3) group.

Extended addressing AM codes indicate that address lines A02-A31 are being used to select a
BYTE(0-3) group.



RULE 2.2:
Except for the User defined codes" the codes defined in Table 2-3 MUST NOT be used for
purposes other than those specified.

RULE 2.3:
VMEbus SLAVE boards MUST NOT respond to reserved address modifier codes.

OBSERVATION 2.5:
Reserved address modifier codes are for future enhancements. If SLAVE boards respond to
these codes" incompatibilities might result at some future date" when usage of these codes is
defined.

PERMISSION 2.3:
User defined codes MAY be used for any purpose which board vendors or board users deem
appropriate (page switching" memory protection" MASTER or task identification, privileged
access to resources, etc.)

Table 2-3. Address Modifier Codes

HEX
CODE

ADDRESS
MODIFIER
5 4 3 2 1 0

FUNCTION

3F H H H H H H Standard Supervisory Block Transfer
3E H H H H H L Standard Supervisory Program Access
3D H H H H L H Standard Supervisory Data Access
3C H H H H L L Reserved
3B H H H L H H Standard Non-Privileged Block Transfer
3A H H H L H L Standard Non-Privileged Program Access
39 H H H L L H Standard Non-Privileged Data Access
38 H H H L L L Reserved

37 H H L H H H Reserved
36 H H L H H L Reserved
35 H H L H L H Reserved
34 H H L H L L Reserved
33 H H L L H H Reserved
32 H H L L H L Reserved
31 H H L L L H Reserved
30 H H L L L L Reserved

2F H L H H H H Reserved
2E H L H H H L Reserved
2D H L H H L H Short Supervisory Access
2C H L H H L L Reserved
2B H L H L H H Reserved



2A H L H L H L Reserved
29 H L H L L H Short Non-Privileged Access
28 H L H L L L Reserved

27 H L L H H H Reserved
26 H L L H H L Reserved
25 H L L H L H Reserved
24 H L L H L L Reserved
23 H L L L H H Reserved
22 H L L L H L Reserved
21 H L L L L H Reserved
20 H L L L L L Reserved

1F L H H H H H User defined
1E L H H H H L User defined
1D L H H H L H User defined
1C L H H H L L User defined
1B L H H L H H User defined
1A L H H L H L User defined
19 L H H L L H User defined
18 L H H L L L User defined

17 L H L H H H User defined
16 L H L H H L User defined
15 L H L H L H User defined
14 L H L H L L User defined
13 L H L L H H User defined
12 L H L L H L User defined
11 L H L L L H User defined
10 L H L L L L User defined

OF L L H H H H Extended Supervisory Block Transfer
OE L L H H H L Extended Supervisory Program Access
OD L L H H L H Extended Supervisory Data Access
OC L L H H L L Reserved
OB L L H L H H Extended Non-Privileged Block Transfer
OA L L H L H L Extended Non-Privileged Program Access
09 L L H L L H Extended Non-Privileged Data Access
08 L L H L L L Reserved

07 L L L H H H Reserved
06 L L L H H L Reserved
05 L L L H L H Reserved
04 L L L H L L Reserved



03 L L L L H H Reserved
02 L L L L H L Reserved
01 L L L L L H Reserved
00 L L L L L L Reserved

L= low signal level   H = high signal level

RECOMMENDATION 2.1:
To allow VMEbus users to tailor the use of the user defined address modifier codes to their
own needs, decode them in a flexible way on SLAVE boards. Users can then configure the
board to give any decoding required by their system.

OBSERVATION 2.6:
Socketed PROMS and FPLAS provide a flexible way for decoding the address modifier codes.

SUGGESTION 2.1:
Where SLAVES are manufactured with a programmed device (e.g. a PROM or a FPLA)
installed in the socket, program the device so that the SLAVE responds to the following AM
codes:

A16 SLAVES with D08(0), D08(EO), D16, or D32 capability: 29, 2D
A24 SLAVES with D08(0), D08(EO), D16, or D32 capability: 39, 3A, 3D, and 3E
A32 SLAVES with D08(0), D08(EO), D16, or D32 capability: 09, OA, OD, and OE
A24 SLAVES with BLT capability: 3B, 3F
A32 SLAVES with BLT capability: OB, OF

The mnemonics A16, A24, and A32 are defined in Table 2-9. The mnemonics D08(0),
D08(EO), D16, D32, and BLT are defined in Tables 2-10, and 2-11.

2.2.3 Data Lines

VMEbus systems can be built with a backplane configuration that provides either 16 data lines
(D00-D15), or 32 data lines (D00-D31). Backplane configurations that provide 16 data lines
allow a MASTER to access only two byte locations simultaneously, while those with 32 data
lines allow up to four byte locations to be accessed. When the MASTER has selected 1, 2, 3,
or 4 byte locations, using the method described in Section 2.2.1, it can transfer binary data
between itself and those locations over the data bus. Table 2-4 shows how the data lines are
used to move data during each of the 34 cycle types.

PERMISSION 2.4:
The data sender (MASTER for a write cycle; SLAVE for a read cycle) may drive data lines
which are not used to transfer data.

Table 2-4. Use Of The Data Lines To Move Data During Each Of
The 34 Cycle Types

During the following types of
cycles...

the data lines are used to transfer data as
shown below:



D24-
D31

D16-
D23

D08
-D15

D00
-D07

ADDRESS-ONLY <----------- no bytes transferred-------->
Single even byte transfers
BYTE(0) READ or WRITE BYTE(0)
BYTE(2) READ or WRITE BYTE(2)
Single odd byte transfers
BYTE(1) READ or WRITE BYTE(1)
BYTE(3) READ or WRITE BYTE(3)

Double byte transfers
BYTE(0-1) READ or WRITE BYTE(0) BYTE(1)
BYTE(2-3) READ or WRITE BYTE(2) BYTE(3)

Quad byte transfers
BYTE(0-3) READ or WRITE BYTE(0) BYTE(1) BYTE(2) BYTE(3)
Single byte block transfers

SINGLE BYTE BLOCK READ or
WRITE

<---- Note  1 ----->

Double byte block transfers
DOUBLE BYTE BLOCK READ or

WRITE
<----- Note 2 ----->

Quad byte block transfers
QUAD BYTE BLOCK READ or

WRITE
BYTE(0) BYTE(1 ) BYTE(2) BYTE(3)

Single byte RMW transfers
BYTE(0) READ-MODIFY-WRITE BYTE(0)
BYTE(1) READ-MODIFY-WRITE BYTE(1 )
BYTE(2) READ-MODIFY-WRITE BYTE(2)
BYTE(3) READ-MODIFY-WRITE BYTE(3)

Double byte RMW transfers
BYTE(0-1) READ-MODIFY-WRITE BYTE(0) BYTE(1 )
BYTE(2-3) READ-MODIFY-WRITE BYTE(2) BYTE(3)

Quad byte RMW transfers
BYTE(0-3) READ-MODIFY-WRITE BYTE(0) BYTE(1 ) BYTE(2) BYTE(3)

Unaligned transfers
BYTE(0-2) READ or WRITE BYTE(0) BYTE(1) BYTE(2)
BYTE(1-3) READ or WRITE BYTE(1 ) BYTE(2) BYTE(3)
BYTE(1-2) READ or WRITE BYTE(1 ) BYTE(2)

Notes:
1. During Single byte block transfers, data is transferred 8 bits at a time over D00-D07 or D08-

D15. One example of this is given below:

D24-D31 D1 6-D23 D08-D15 D00-D07
First data transfer BYTE(1)



BYTE(2)
BYTE(3)

BYTE(0)
BYTE(1)

BYTE(2)
Last data transfer BYTE(3)

2. During a Double byte block transfer, data is transferred 16 bits at a time over D00-D15. One
example of this is given below:

D24-D31 D16-D23 D08-D15 D00-D07
First data transfer BYTE(2) BYTE(3)

BYTE(0) BYTE(1 )
BYTE(2) BYTE(3)
BYTE(0) BYTE(1 )
BYTE(2) BYTE(3)

Last data transfer BYTE(0) BYTE(1 )

2.2.4 Data Transfer Bus Control Lines

The following signal lines are used to control the movement of data over the data transfer
lines:

AS* Address Strobe
DS0* Data Strobe Zero
DS1* Data Strobe One
BERR* Bus Error
DTACK* Data Transfer Acknowledge
WRITE* Read/Write

2.2.4.1 AS*

A falling edge on this line informs all SLAVE modules that the address is stable and can be
captured.

2.2.4.2 DS0* And DS1*

In addition to their function in selecting byte locations for data transfer, as described in Section
2.2.1, the data strobes also serve additional functions. On write cycles, the first data strobe
failing edge indicates when the MASTER has placed valid data on the data bus. On read
cycles, the first rising edge tells the SLAVE when it can remove valid data from the data bus.

OBSERVATION 2.7:
VMEbus MASTERS are not permitted to drive either of the data strobes low before driving AS*
low. However, due to the fact that AS* might be more heavily loaded on the backplane than the



data strobes, SLAVES and LOCATION MONITORS might detect a falling edge on a data
strobe, before they detect the falling edge on AS*.

PERMISSION 2.5:
VMEbus SLAVES and LOCATION MONITORS MAY be designed to capture the address
when they detect a falling edge on a data strobe instead of on the falling edge

OBSERVATION 2.8:
VMEbus SLAVES and LOCATION MONITORS that capture the address on the falling edge of
the data strobes) need not monitor AS*.

OBSERVATION 2.9:
In order to take full advantage of address pipelining as described in Section 2.4.2, or to
perform block read and write cycles, a SLAVE should capture the address on the falling edge
of AS*.

2.2.4.3 DTACK*

The SLAVE drives DTACK* low to indicate that it has successfully received the data on a write
cycle. On a read cycle, the SLAVE drives DTACK* low to indicate that it has placed data on
the data bus.

2.2.4.4 BERR*

BERR* is driven low by the SLAVE or by the BUS TIMER to indicate to the MASTER that the
data transfer was unsuccessful. For example, if a MASTER tries to write to a location which
contains Read-Only Memory, the responding SLAVE might drive BERR* low. If the MASTER
tries to access a location that is not provided by any SLAVE, the BUS TIMER would drive
BERR* low after waiting a specified period.

OBSERVATION 2.10:
The BERR* line is a convenience which is useful when debugging VMEbus systems. It also
allows system failures to be detected quickly during normal operation. Not all VMEbus systems
will need this capability.

PERMISSION 2.6:
VMEbus SLAVES MAY be designed without a driver for BERR*.

SUGGESTION 2.2:
Design SLAVES to respond with a falling edge on BERR* in the following situations:

a. When a D08(0), D08(EO), or D16 SLAVE is requested to do a quad byte cycle.
b. When a D08(0) or D08(EO) SLAVE is requested to do a double byte cycle.
c. When a non-UAT SLAVE is requested to do an unaligned transfer. (i.e. A triple byte transfer

or a double byte BYTE(1-2) transfer.)
d. When a SLAVE detects an uncorrectable error in the data it retrieves from its internal

storage during a read cycle.



The mnemonics D08(0), D08(EO), D16, and UAT are defined in Tables 2-10 and 2-15.

RULE 2.4:
D08(0), D08(EO), and D16 SLAVES MUST NOT respond with a falling edge on DTACK*
during a quad byte cycle if they do not have quad byte capability.

RULE 2.5:
D08(0) and D08(EO) SLAVES MUST NOT respond with a falling edge on DTACK* during a
double byte cycle if it does not have double byte capability.

RULE 2.6:
A SLAVE MUST NOT respond with a falling edge on DTACK* during an unaligned transfer
cycle, if it does not have UAT capability.

2.2.4.5 WRITE*

WRITE* is a level significant signal line strobed by the falling edge of the first data strobe. It is
used by the MASTER to indicate the direction of data transfer operations. When WRITE* is
driven low, the data transfer direction is from the MASTER to the SLAVE. When WRITE* is
driven high, the data transfer direction is from the SLAVE to the MASTER.

2.3 DTB MODULES - BASIC DESCRIPTION

In addition to the ADDRESS-ONLY cycle, the DTB protocol defines 33 different cycle types
that can be used to transfer data. Each of these 34 cycle types can be used in any of three
addressing modes: short (16-bit), standard (24- bit), and extended (32-bit). The capabilities of
MASTERS, SLAVES and LOCATION MONITORS are described by a list of mnemonics that
show what cycle types they can generate, accept, or monitor respectively. (This will be
described in more detail later in this chapter.)

Sections 2.3.1 through 2.3.4 provide block diagrams for the four types of DTB functional
modules: MASTER, SLAVE, LOCATION MONITOR, and BUS TIMER.

RULE 2.7:
Output signal lines shown with solid lines in Figures 2-2 through 2-5 MUST be driven by the
module, unless it would always drive them high.

OBSERVATION 2.11:
IF an output signal line is not driven,
THEN terminators on the backplane ensure that it is high.

RULE 2.8:
Input signal lines shown with solid lines in Figures 2-2 through 2-5 MUST be monitored and
responded to in the appropriate fashion.

OBSERVATION 2.1 2:



RULES and PERMISSIONS for driving and monitoring signal lines shown with dotted lines in
Figures 2-2 through 2-5 are given in Tables 2-5, 2-6, and 2-8.

Figure 2-2.  Block Diagram: MASTER

2.3.1 MASTER

The block diagram of the MASTER is shown in Figure 2-2. The dotted lines in the diagram
show signals whose use varies among the various types of MASTERS. Table 2-5 specifies
how the various types of MASTERS use these lines. Further information about how the various
types of MASTERS drive the address lines, the data lines, LWORD*, DS0*, and DS1* is given
in Tables 2-19, 2-20, 2-21.

Table 2-5. RULES And PERMISSIONS That Spesify The Use of The Dotted Lines By The
Various Types of MASTERS

Type of MASTER Use of dotted lines

D08(EO) MUST drive DS0* and DS1*, but not both low on   the
same data transfer.
MUST monitor and drive D00-D15.
MUST NOT drive IACK* low.
MAY or MAY not drive LWORD*.
MAY or MAY not drive or monitor D16-D31.



D16 MUST drive DS0* and DS1*.
MUST monitor and drive D00-D15.
MUST NOT drive IACK* low.
MAY or MAY not drive LWORD*.
MAY or MAY not drive or monitor D16-D31.

D32 MUST drive DS0*" DS1*, and LWORD*.
MUST monitor and drive D00-D31.
MUST NOT drive IACK* low.

A16 MUST drive A01 -A15.
MAY or MAY not drive A16-A31

A24 MUST drive A01-A23.
MAY or MAY not drive A24-A31.

A32 MUST drive A01-A31.
ALL  MAY or MAY not monitor BCLR*" or ACFAIL*

(see Chapters 3 and 5).

Notes:
1. The mnemonics D08(EO),  D16, and D32 are defined in Table 2-10.
2. The mnemonics A16, A24, and A32 are defined in Table 2-9.

2.3.2 SLAVE
The block diagram of the SLAVE is shown in Figure 2-3. The dotted lines in the diagram show
signals whose use varies among the various types of SLAVES. Table 2-6 shows how the
various types of SLAVES use these lines. Further information about how the various types of
SLAVES drive the data lines is given in Table 2-22.

Table 2-6. RULES And PERMISSIONS That Specify The Use Of The Dotted
Lines By The Various Types Of SLAVES

Type of SLAVE Use of dotted lines

D08(0) MUST monitor and drive D00-D07.
MAY or MAY not monitor AS*.
MAY or MAY not monitor or drive D08-D31.

D08(EO) MUST monitor and drive D00-D07.
MAY or MAY not monitor AS*.
MAY or MAY not monitor or drive D16-D31.

D16 MUST monitor and drive D00-D15.
MAY or MAY not monitor AS*.
MAY or MAY not monitor or drive D16-D31.

D32 MUST monitor and drive D00-D31.
MAY or MAY not monitor AS*.

A16 MUST monitor A01-A15.
MAY or MAY not monitor A16-A31.

A24 MUST monitor A01-A23.
MAY or MAY not monitor A24-A31.



A32 MUST monitor A01-A31.
ALL MAY or MAY not drive BERR*.

Notes :
1. The mnemonics D08(0), D08(EO), D16, and D32 are defined in Table 2-10.
2. The mnemonics A16, A24, and A32 are defined in Table 2-9.

2.3.3 BUS TIMER

The block diagram of the BUS TIMER is shown in Figure 2-4. BUS TIMERS can be designed
to drive BERR* low after various periods of time. Table 2-7 shows how the BTO( ) mnemonic is
used to describe the various types of BUS TIMERS.

OBSERVATION 2.13:
The dotted DTACK* and BERR* lines shown in Figure 2-4 allow to implement a BUS TIMER in
one of two ways:

a. To drive BERR* low when the first data strobe stays low for longer than the bus time-out
period, regardless of the levels on the DTACK* and BERR* lines.

b. To drive BERR* low when the first data strobe stays low for longer than the bus time-out
period, but only if both DTACK* and BERR* are high at the point of time-out.

Table 2-7. Use Of The BTO( ) Mnemonic To Specify The
Time-Out Period Of BUS TIMERS

The Following
Mnemonic

When
Applied
to a

Means that it

BTO(x) BUS TIMER drives BERR* low if the first data strobe stays low
for longer than x microseconds

2.3.4 LOCATION MONITOR

The block diagram of the LOCATION MONITOR is shown in Figure 2-5. The dotted lines in the
diagram show signals whose use varies among the various types of LOCATION MONITORS.
Table 2-8 shows how the various types of LOCATION MONITORS use these lines.

Table 2-8. RULES and PERMISSIONS That Specify The Use Of The
Dotted Lines By The Various Types Of LOCATION MONITORS

Type of LOCATION
MONITOR

Use of dotted lines

A16 MUST monitor A01-A15.
MAY or MAY not monitor A16-A31.

A24 MUST monitor A01-A23.



MAY or MAY not monitor A24-A31.
A32 MUST monitor A01-A31.
ALL MAY or MAY not monitor AS*.

Note:
The mnemonics A16, A24, and A32 are defined in Table 2-9.

2.3.5 Addressing Modes

MASTERS broadcast an address over the DTB at the beginning of each cycle. This
broadcasted address might be a 16, 24 or 32-bit address, depending upon the capabilities of
the MASTER broadcasting it. The 16-bit addresses are “short addresses” the 24-bit addresses
are “standard addresses” and the 32-bit addresses are “extended addresses”.

Table 2-9 shows the various mnemonics used to describe the addressing capabilities and how
each is used to describe MASTERS, SLAVES, and LOCATION MONITORS.

Table 2-9. Mnemonics That Specify Addressing Capabilities

The Following
Mnemonic When Applied to

a
Means that it

A16 MASTER can generate cycles with short (16 bit)
addresses.

SLAVE can accept cycles with short (16 bit) addresses
LOCATION
MONITOR

can monitor cycles with short (16 bit) addresses.

A24 MASTER can generate cycles with standard (24 bit)
addresses.

SLAVE can accept cycles with standard (24 bit)
addresses.

LOCATION
MONITOR

can monitor cycles with standard (24 bit)
addresses.

A32 MASTER can generate cycles with extended (32 bit)
addresses

SLAVE can accept cycles with extended (32 bit)
addresses.

LOCATION
MONITOR

can monitor cycles with extended (32 bit)
addresses.

The MASTER broadcasts an Address Modifier (AM) code along with each address to tell
SLAVES whether the address is short, standard, or extended.



Short addresses are generated by A16 MASTERS, and accepted by A16 SLAVES. Standard
addresses are generated by A24 MASTERS, and accepted by A24 SLAVES. Extended
addresses are generated by A32 MASTERS, and accepted by A32 SLAVES.

Short addressing is intended primarily for addressing I/O devices. It allows A16 SLAVES to be
designed with less logic, since they do not have to decode as many address lines. While I/O
boards can be designed to decode standard addresses and extended addresses, short
addressing usually makes this unnecessary.

Standard and extended addressing modes are intended primarily for addressing memory,
although there is no rule against designing I/O boards that also respond to these addressing
modes. Standard and Extended addressing modes allow much larger addressing ranges.

RULE 2.9:
SLAVE boards MUST decode all of the address modifier lines.

OBSERVATION 2.14:
RULE 2.9 allows a SLAVE to differentiate short addresses, standard addresses, and extended
addresses.

OBSERVATION 2.15:
In addition to the three modes of addressing described here, there is a fourth mode which is
used on interrupt acknowledge cycles (see chapter 4). These interrupt acknowledge cycles
can be distinguished from data transfer cycles by the fact the the IACK* signal line is low
instead of high.

RULE 2.10:
Whenever a MASTER broadcasts an address over the address bus, it MUST ensure that
IACK* is high.

PERMISSION 2.7:
A MASTER MAY either drive IACK* high during the address broadcast or it MAY leave IACK*
undriven. (The bus terminators will then hold it high.)

RULE 2.11:
SLAVES MUST NOT respond to DTB cycles when IACK* is low.

RECOMMENDATION 2.2:
Since many systems will include a mixture of A16, A24, and A32 SLAVES, include A16 and
A24 capability on 32-bit CPU cards in addition to the A32 capability, and include A16 capability
on CPU cards with A24 capability.

2.3.6 Basic Data Transfer Capabilities

There are four basic data transfer capabilities associated with the DTB: D08(EO) (Even and
Odd byte), D08(0) (Odd byte only), D16, and D32. These capabilities allow flexibility when
interfacing different types of processors and peripherals to the bus.



Eight-bit processors can be interfaced to the bus as D08(EO) MASTERS. Sixteen-bit
processors can be interfaced to the bus as D16 MASTERS. The D16 SLAVE module is useful
for interfacing 16 bit memory devices or 16 bit I/O SLAVES to the DTB.

Many existing peripheral chips have registers that are only 8 bits wide. While these chips often
have several of these registers, they cannot provide the contents of two registers
simultaneously when a D16 MASTER attempts to access two adjacent locations with a double
byte read cycle. These 8-bit peripheral ICs can be interfaced to the DTB as a D08(0) SLAVE.
D08(0) SLAVES provide only BYTE(1) or BYTE(3) locations and respond only to single byte
accesses. (Since single byte accesses to these odd byte locations always take place over
D00-D07, this simplifies the D08(0) SLAVE’S interface logic.)

RECOMMENDATION 2.3:
Since most 16-bit microprocessors can also access memory 8 bits at a time, include D08(EO)
MASTER capability on 16-bit CPU boards in addition to the D16 capability. In addition to
allowing 8 bit data transfers to and from memory, this also allows them to access D08(0)
SLAVES.

RECOMMENDATION 2.4:
Since most 32-bit microprocessors can also transfer data to and from memory 8 and 16 bits at
a time, include D08(EO) and D16 capability on 32-bit CPU boards in addition to D32 capability.
The D08(EO) capability not only allows 8-bit data transfers to and from memory, but it also
allows the MASTER to access D08(0) SLAVES.

OBSERVATION 2.16:
It might seem logical to define "even byte only" SLAVES which respond to the even byte
memory locations adjacent to the D08(0) SLAVES. But" this cannot be done because there is
only one data transfer acknowledge line. If a MASTER were to select both an even byte and
an odd byte location simultaneously" by doing a double byte transfer, both SLAVES would
drive the same data acknowledge (DTACK*) line and the MASTER would not know whether
both boards had acknowledged the access.

RECOMMENDATION 2.5:
Since many systems will include MASTERS with various data transfer capabilities" include
D08(EO) and D16 capability on 32-bit SLAVE (memory) boards in addition to the D32
capability" and include D08(EO) capability on 16-bit SLAVE boards in addition to the D16
capability.

OBSERVATION 2.17:
Since D08(0) SLAVES respond only to odd byte addresses, they cannot provide contiguous
memory. D08(0) SLAVES are useful only for I/O, status, or control registers, while D08(EO),
D16 and D32 SLAVES are also useful for memory.

TabIe 2-10 shows the various mnemonics used to describe the basic data transfer capabilities,
and how each is used to describe MASTERS, SLAVES, and LOCATION MONITORS.



Table 2-10. Mnemonics That Specify Basic Data Transfer Capabilities

The Following
Mnemonic When Applied to

a
Means that it

D08(EO) MASTER can generate the foIlowing cycles:
SLAVE can accept the following cycIes:
LOCATION
MONITOR

can monitor the following cycles:

Single byte read cycles:
BYTE(0) READ
BYTE(1) READ
BYTE(2) READ
BYTE(3) READ
Single byte write cycles:
BYTE(0) WRITE
BYTE(1 ) WRITE
BYTE(2) WRITE
BYTE(3) WRITE

D08(0) SLAVE can accept the foIIowing cycles:
Single byte read cycIes:
BYTE(1) READ
BYTE(3) READ
Single byte write cycIes:
BYTE(1 ) WRITE
BYTE(3) WRITE

D16 MASTER can generate the following cycles:
SLAVE can accept the following cycles:
LOCATION
MONITOR

can monitor the following cycIes:

Double byte read cycles:
BYTE(0-1 ) READ
BYTE(2-3) READ
Double byte write cycles:
BYTE(0-1 ) WRITE
BYTE(2-3) WRITE

D32 MASTER can generate the following cycles:
SLAVE can accept the following cycles:
LOCATION
MONITOR

can monitor the following cycIes:

Quad byte read cycle:



BYTE(0-3) READ
Quad byte write cycle:
BYTE(0-3) WRITE

Note:  (EO) is Even and Odd; (O) is Odd only.

2.3.7 Block Transfer Capabilities

MASTERS often access several memory Iocations in ascending order. When this is the case,
block transfer cycles are very useful. They allow the MASTER to provide a single address, and
then access data in that location and those at higher addresses, without providing additional
addresses.

When a MASTER initiates a block transfer cycle, the responding SLAVE Iatches the address
into an on-board address counter. The MASTER, upon completing the first data transfer, (i.e.
driving data strobes high) does not allow the address strobe to go high. Instead, it repeatedly
drives the data strobe(s) low in response to data transfer acknowledgments from the SLAVE,
and transfers data to or from sequential memory locations in ascending order.

To access the next location(s), the SLAVE increments an on-board counter that generates the
address for each transition of the data strobe(s).

OBSERVATION 2.18:
Block transfer cycles of indefinite Iength are not allowed, because this complicates the design
of memory boards. Specifically, all block transfer SLAVES (the one that responds, as well as
those that do not) would need to Iatch the initial address and then increment the address
counter on each bus transfer. AlI SLAVES would then have to decode the incremented
address to see if the block transfer has crossed a board boundary into their address range.
While this is certainly possible, such address decoding typically limits access times of the
SLAVE. To simplify the design of these SLAVES, and to permit faster access times, RULE
2.12 has been formulated.

RULE 2.12:
Block transfer cycles MUST NOT cross any 256 byte boundary.

OBSERVATION 2.1.9:
RULE 2.12 limits the maximum Iength of block transfers to 256 bytes. However, knowing that
only A01 through A07 will change during the course of the block transfer simplifies the design
of block transfer SLAVES. The upper address Iines only have to be decoded once, at the
beginning of the block transfer cycle, allowing much faster access times on all subsequent
data transfers.

OBSERVATION 2.20:
In some cases it might be necessary to transfer a large block of data which crosses one or
more 256-byte boundaries. In such a case, if the hardware on the board which does the block
transfer is designed to recognize the arrival at a 256-byte boundary, it can momentarily drive
AS* high and then initiate another block transfer without the intervention of system software.



The block read cycle is very similar to a string of read cycIes. Likewise, the block write cycle is
very similar to a string of write cycles. The difference is that only the initial address is
broadcast by the MASTER and the address strobe is held low during all of the data transfers.

OBSERVATION 2.21:
Control of the DTB cannot be transferred during block transfers because the address strobe is
held low through all of the data transfers, and control of the DTB can only be transferred while
the address strobe is high.

Table 2-11 lists the various mnemonics used to describe block transfer capabilities and how
each is used to describe MASTERS, SLAVES, and LOCATION MONITORS.

Table 2-11. Mnemonics That Specify Block Transfer Capabilities

The Following
Mnemonic

When Applied to a Means that it

BLT D08(EO) MASTER can generate the following cycles:
D08(EO) SLAVE can accept the following cycles:
D08(EO) LOCATION
MONITOR

can monitor the following cycles:

Block read cycIes:
SINGLE BYTE BLOCK READ
Block write cycles:
SINGLE BYTE BLOCK WRITE

D16 MASTER can generate the following cycIes:
D16 SLAVE can accept the following cycIes:
D16 LOCATION
MONITOR

can monitor the following cycIes:

Block read cycIes:
DOUBLE BYTE BLOCK READ
Block write cycles:
DOUBLE BYTE BLOCK WRITE

D32 MASTER can generate the following cycIes:
D32 SLAVE can accept the following cycIes:
D32 LOCATION
MONITOR

can monitor the following cycIes:

Block read cycles:
QUAD BYTE BLOCK READ
Block write cycles:
QUAD BYTE BLOCK WRITE

2.3.8 Read-Modify-Write Capability



In multiprocessor systems which share resources such as memory and l/O, a method is
needed to allocate these resources. One very important goal of this allocation algorithm is to
ensure that a resource being used by one task cannot be used by another at the same time.
The problem is best described by an example:

Two processors in a distributed processing system share a common resource (e.g., a printer).
Only one processor can use the resource at a time. The resource is allocated by a bit in
memory -i.e., if the bit is set, the resource is busy; if it is cleared, the resource is available. To
gain use of the resource, processor A reads the bit and tests it to determine whether it is
cleared. If the bit is cleared, processor A sets the bit to lock out processor B. This operation
takes two data transfers: a read to test the bit, and a write to set the bit. However, a difficulty
might arise if the bus is given to processor B between these two transfers. Processor B might
then also find the bit cleared and assume the resource is available. Both processors will then
set the bit in the next available cycle and attempt to use the resource.

This conflict is avoided by defining a read-modify-write cycle which prevents transferring
control of the DTB between the read portion and the write portion of the cycle. This cycle is
very similar to a read cycle immediately followed by a write cycle. The difference is that the
address strobe is held low during both transfers. This ensures that, unlike a read cycle
followed by a write cycle, control of the DTB cannot be transferred during a read-modify-write
cycle, as this is only possible while the address strobe is high.

Table 2-12 lists the various mnemonics used to describe read-modify-write capabilities and
how each is used to describe MASTERS, SLAVES, and LOCATION MONITORS.

Table 2-12. Mnemonics That Specify Read-Modify-Write Capabilities

The
Following
Mnemonic

When Applied to a Means that it

RMW D08(EO) MASTER can generate the following cycles:
D08(EO) SLAVE can accept the following cycles:

D08(EO) LOCATION
MONITOR

can monitor the following cycIes:

Single byte read-modify-write cycles:
BYTE(0) READ-MODIFY-WRITE
BYTE(1 ) READ-MODIFY-WRITE
BYTE(2) READ-MODIFY-WRITE
BYTE(3) READ-MODIFY-WRITE

D08(0) SLAVE can accept the following cycIes:
Single byte read-modify-write cycles:
BYTE(1 ) READ-MODIFY-WRITE
BYTE(3) READ-MODIFY-WRITE



D16 MASTER can generate the following cycles:
D16 SLAVE can accept the following cycIes:

D16 LOCATION
MONITOR

can monitor the following cycIes:

Double byte read-modify-write cycles:
BYTE(0-1) READ-MODIFY-WRITE
BYTE(2-3) READ-MODIFY-WRITE

D32 MASTER can generate the following cycles:
D32 SLAVE can accept the following cycIes:

D32 LOCATION
MONITOR

can monitor the following cycIes:

Quad byte read-modify-write cycles:
BYTE(0-3) READ-MODIFY-WRITE

2.3.9 Unaligned Transfer Capability

Some 32-bit microprocessors store and retrieve data in an unaligned fashion. For example, a
32-bit value might be stored in four different ways, as shown in Figure 2-6.

Example
A

Example
B

Example
C

Example
D

BYTE(3)
4-byte group BYTE(2) XXXX

number 2 BYTE(1) XXXX XXXX
BYTE(0) XXXX XXXX XXXX
BYTE(3) XXXX XXXX XXXX XXXX

4-byte group BYTE(2) XXXX XXXX XXXX
number 1 BYTE(1) XXXX XXXX

BYTE(0) XXXX

Figure 2-6. Four Ways That 32 Bits Of Data Might Be Stored In Memory

The MASTER can transfer the 32 bits of data using several different sequences of DTB cycles.
For example, it can transfer the data one byte at a time, using four single byte data transfers.
However, a MASTER can accomplish the transfer much quicker by using one of the cycle
sequences shown in Table 2-13.

OBSERVATION 2.22:
The sequences shown in Table 2-13 would be typical of a MASTER that accesses the byte
Iocations in ascending order. The VMEbus protocol does not require this.

As shown in Table 2-13, each of these 32-bit transfers can be accomplished with a
combination of singe byte and double byte transfers. However, examples B and D require
three bus cycles when done this way. Because of this, the DTB protocol also includes two



triple byte transfer cycles. When used in combination with a single byte cycle, these triple byte
cycIes allow data to be stored as shown in examples B and D using only two bus cycles.

Some 32-bit microprocessors also store and retrieve data 16 bits at a time, in an unaligned
fashion, as shown in Figure 2-7.

Table 2-13. Transferring 32 Bits Of Data Using Multiple Byte Transfer CycIes

Example Cycle sequences used to
accomplish the transfer

Data bus lines
used (See
Figure 2-6)

Byte locations
accessed

A Quad byte transfer D00-D31 Grp 1, BYTE(0-3)

B Single byte transfer D00-D07 Grp 1, BYTE(1)
Double byte transfer D00-D15 Grp 1 , BYTE(2-3)
Single byte transfer D08-D15 Grp 2, BYTE(0)
Triple byte transfer D00-D23 Grp 1 , BYTE(1-3)
Single byte transfer D08-D15 Grp 2, BYTE(0)

C Double byte transfer D00-D15 Grp 1, BYTE(2-3)
Double byte transfer D00-D15  Grp 2, BYTE(0-1)

D Single byte transfer D00-D07 Grp 1, BYTE(3)
Double byte transfer D00-D15 Grp 2, BYTE(0-1 )
Single byte transfer D08-D15 Grp 2, BYTE(2)

or
Single byte transfer D00-D07 Grp 1, BYTE(3)
Triple byte transfer D08-D31 Grp 2, BYTE(0-2)

Example E Example F Example
G

Example
H

BYTE(3)
4-byte group BYTE(2)

number 2 BYTE(1)
BYTE(0) XXXX
BYTE(3) XXXX XXXX

4-byte group BYTE(2) XXXX XXXX
number 1 BYTE(1) XXXX XXXX

BYTE(0) XXXX

Figure 2-7. Four Ways That 16 Bits Of Data Might Be Stored In Memory

The MASTER can transfer the 16 bits of data using several different sequences of DTB cycIes
as listed in Table 2-14.



OBSERVATION 2.23:
The sequences listed in Table 2-14 would be typical of a MASTER that accesses the byte
locations in ascending order. The VMEbus protocol does not require this.

As shown in Figure 2-13, the 16-bit transfer in example F can be accomplished with two single
byte transfers. However, this requires two bus cycles. Because of this, the DTB protocol also
includes a double byte transfer cycle which allows data to be stored as shown in example F
using only one bus cycle.

OBSERVATION 2.24:
Since unaligned transfers make use of all 32 data lines, only D32 MASTERS and
SLAVES can do unaligned transfers.

Table 2-15 Iists how the unaligned transfer (UAT) mnemonic is used to describe MASTERS,
SLAVES, and LOCATION MONITORS.

Table 2-14. Transferring 16 Bits Of Data Using Multiple Byte Transfer Cycles

Example Cycle sequences used to
accomplish the transfer

Data bus lines
used

Byte locations
accessed (See Figure

2-7)

E Double byte transfer D00-D15 Grp 1 , BYTE(0-1 )

F Single byte transfer D00-D07 Grp 1, BYTE(1)
Single byte transfer D08-D15 Grp 1, BYTE(2)

or
Double byte transfer D08-D23 Grp 1, BYTE(1-2)

G Double byte transfer D00-D15 Grp 1, BYTE(2-3)

H Single byte transfer D00-D07 Grp 1, BYTE(3)
Single byte transfer D08-D15 Grp 2, BYTE(0)

Table 2-15. Mnemonic That Specifies Unaligned Transfer Capability

The Following
Mnemonic

When Applied to
a

Means that it

UAT D32 MASTER can generate the following cycIes:
D32 SLAVE can accept the following cycIes:

D32 LOCATION
MONITOR

can monitor the following cycIes:

Triple byte read cycIes:
BYTE(0-2) READ
BYTE(1-3) READ



Triple byte write cycIes:
BYTE(0-2) WRITE
BYTE(1-3) WRITE

Double byte read cycle:
BYTE(1-2) READ

Double byte write cycle:
BYTE(1-2) WRITE

2.3.10 ADDRESS-ONLY Capability

The ADDRESS-ONLY cycle is the only cycle on the DTB that is not used to transfer data. It
begins as a typical DTB cycle, with the address, address modifier code, IACK* and LWORD*
lines becoming valid and the address strobe falling after a set-up time. However, the data
strobes are never driven low. After holding the various Iines strobed by the address strobe
stable for a prescribed minimum period, the MASTER finishes the cycle without waiting for
DTACK* or BERR* to go low. (The ADDRESS ONLY cycle is also the only type of DTB cycle
that does not require a response in order to complete.)

Table 2-16 lists how the ADDRESS-ONLY mnemonic (ADO) is used to describe MASTERS
and SLAVES.

OBSERVATION 2.25:
ADDRESS-ONLY cycles can be used to enhance board performance by allowing a CPU board
to broadcast an address before it has determined whether or not that address selects a SLAVE
on the VMEbus. Broadcasting the address in this fashion allow VMEbus SLAVES to decode
the address concurrently with the CPU board.

RECOMMENDATION 2.6:
Since MASTERS might generate ADDRESS-ONLY cycles, design SLAVES to include ADO
capability.

Table 2-16. Mnemonic That Specifies ADDRESS-ONLY Capability

The Following
Mnemonic

When Applied to
a

Means that it

ADO MASTER can generate ADDRESS-ONLY cycIes
SLAVE can tolerate ADDRESS-ONLY cycIes without

loss or alteration of stored data.

2.3.11 Interaction Between DTB Functional Modules

Data transfers take place between MASTERS and SLAVES. The MASTER is the module
controlling the transfer. The SLAVE which recognizes the address as its own is the responding
SLAVE, and all other SLAVES are non-responding SLAVES.



After initiating a data transfer cycle, the MASTER waits for a response from the responding
SLAVE. When the MASTER detects the response from the SLAVE it drives the data strobes
and address strobe high, terminating the cycle. The SLAVE responds by releasing its response
Iine.

OBSERVATION 2.26:
Although the address and data timing are Iargely independent, there are two exceptions. First,
the MASTER waits until it has driven AS* low before driving either of the data strobes low.
Second, the SLAVE acknowledges both the address strobe and the data strobes with either
DTACK* or BERR*.

RULE 2.13:
IF a SLAVE responds to a data transfer cycle, THEN it MUST either drive DTACK* low or it
MUST drive BERR* low, but not both.

OBSERVATION 2.27:
Because of possible bus skew due to different loading of the address strobe and the data
strobes, the falling edge of the data strobes might be detected by the SLAVE slightly before
the address strobe falling edge.

OBSERVATION 2.28:
The WRITE* line is high/low to identify a read/write cycle before the first data strobe is driven
low, and remains stable until both data strobes are high.

RULE 2.14:
Before driving the data bus, the MASTER MUST ensure that the previous responding SLAVE
has stopped driving the data bus. It does so by verifying that DTACK* and BERR* are both
high before it drives the data strobe(s) to low on any cycle, and before it drives any of the data
lines during a write cycle.

RULE 2.15:
At the end of a read cycle the responding SLAVE MUST release the data bus before allowing
DTACK* to go high.

RULE 2.16:
When the MASTER reads data from the SLAVE, the SLAVE MUST maintain valid data on the
data bus until the MASTER returns the first data strobe to high.

SUGGESTION 2.3:
For optimum performance, design MASTERS so that they drive the data strobes high as soon
as possible after DTACK* or BERR^ goes low. Also, design SLAVES so that they release the
data bus and DTACK* as soon as possible after detecting the data strobes high. This allows
the maximum data transfer rate on the bus.

OBSERVATION 2.29:
Addressing information on the bus might change soon after a module drives DTACK or BERR*
low, and before the MASTER drives the data strobes high.



A third type of module, called the LOCATION MONITOR, monitors the data transfer and
generates either or both of two on-board signals whenever an access is done to a byte location
that it monitors. If the access is a write cycle, then the on-board WRITE signal is generated. If
the access is a read cycle, then the on-board READ signal is generated. If a read-modify-write
cycle is performed, then both on-board signals are generated.

If the cycle takes too long, a fourth module, called a BUS TIMER intervenes by driving BERR*
low, this completes the data transfer handshake, and allows the bus to resume operation.

RULE 2.17:
There is a strict interlock between the rising and falling edges of the data strobes and
DTACK*/BERR*. Once a MASTER has driven its data strobe(s) low it MUST NOT drive its
data strobe(s) high and finish a transfer without first receiving a data transfer acknowledge or a
bus error response.

OBSERVATION 2.30:
A board containing a processor, which needs to direct data transfers between itself and other
VMEbus boards, would contain a MASTER module. If the same board also contained memory
accessible from the VMEbus, it would also contain a SLAVE module. A floating point processor
or intelligent peripheral controller might receive commands through a SLAVE interface from a
general purpose processor board. It then might act as a MASTER to access global VMEbus
memory to execute the command it has been given.

2.4 TYPICAL OPERATION

MASTERS initiate data transfers over the DTB. The addressed SLAVE then acknowledges the
transfer. After receiving the data transfer acknowledge, the MASTER terminates the data
transfer cycle. The asynchronous nature of the DTB allows the SLAVE to control the time
taken for the transfer.

Before doing any data transfers, a MASTER has to be granted exclusive control of the DTB.
This ensures that multiple MASTERS will not try to use the DTB at the same time. The
MASTER gains control of the DTB using the modules and signal lines of the Arbitration Bus.
(Section 2.5 explains this further) The following discussion presumes that the MASTER has
already been granted and has assumed control of the DTB.

2.4.1 Typical Data Transfer Cycles

Figure 2-8 shows a typical single byte read cycle. To start the transfer, the MASTER drives the
addressing lines with the desired address and address modifier code. Since this example is a
BYTE(1) READ CYCLE, the MASTER drives LWORD* high and A01 low. Since it is not doing
an interrupt acknowledge cycle, it does not drive IACK* Iow. The MASTER then waits for a
specified set-up time before driving AS* low, to allow the address lines and the address
modifier Iines to stabilize before the SLAVES sample them.



Each SLAVE determines whether it should respond by examining the levels on the address
lines, the address modifier Iines, and IACK*. While this is happening, the MASTER drives
WRITE* high to indicate a read operation. The MASTER then verifies that DTACK* and BERR*
are high to ensure that the SLAVE from the previous cycle is no longer driving the data bus. If
this is the case, the MASTER then drives DS0* low, while keeping DS1* high.

The responding SLAVE then determines which 4-byte group and which byte of that group is to
be accessed, and starts the transfer. After it has retrieved the data from its internal storage and
placed it on data bus Iines D00-D07, the SLAVE signals the MASTER by driving DTACK* low.
The SLAVE then holds DTACK* low and maintains the data valid for as long as the MASTER
holds DS0* low.

When the MASTER receives DTACK* driven to low, it captures the data on D00-D07, releases
the address lines and drives DS0* and AS* to high. The SLAVE responds by releasing D00-
D07 and releasing DTACK* to high.

OBSERVATION 2.31:
The MASTER in Figure 2-8 releases all of the DTB Iines at the end of the data transfer. This is
not required unless the MASTER’S REQUESTER released BBSY* during the data transfer as
described in Section 2.5.

The cycle flow for double byte and quad byte data transfer cycles are very similar to the single
byte cycle. Flow diagrams for these cycles are shown in Figures 2-9 and 2-10.

MASTER SLAVE

ADDRESS THE SLAVE

Present address
Present address modifier
Drive LWORD* high
Drive IACK* high
Drive AS* to low
SPECIFY DATA DIRECTION

Drive WRITE* high

SPECIFY DATA WIDTH

Wait until DTACK* high and BERR* high
(indicates that previous SLAVE is no longer
driving data bus)

Drive DS0* to low and DS1* to high

PROCESS ADDRESS

Receive address
Receive address modifier
LWORD* high
Receive IACK* high
Receive AS* low
If address is valid for this SLAVE then select
on-board device

FETCH DATA

Receive WRITE* high



Read data from selected device

Receive DS1* high
Receive DS0* low
Present data on Iines D00-D07

RESPOND TO MASTER

Drive DTACK* to low
ACQUIRE DATA

Receive data on lines D00-D07
Receive DTACK* low

TERMINATE CYCLE

If last cycle then
Release address Iines
Release address modifier Iines
Release LWORD*
Release IACK*
Endif
Drive DS0* to high

Drive AS. to high
END TERMINATION

If last cycle then
Release DS0* and DS1*
Release AS*
EIse go to ADDRESS THE SLAVE
Endif

END RESPONSE TO MASTER

Receive AS* and DS0* high

Release D00-D07

ACKNOWLEDGE TERMINATION

Release DTACK*

Figure 2-8. An Example Of A Single Byte Read Cycle

MASTER SLAVE
ADDRESS THE SLAVE

Present address
Present address modifier
Drive LWORD* high
Drive IACK* high
Drive AS* to low
SPECIFY DATA DIRECTION PROCESS ADDRESS



Drive WRITE* low

SPECIFY DATA WIDTH

Wait until DTACK* high and BERR* high
(indicates that previous SLAVE is no longer
driving data bus)

Place data on D00-D15
Drive DS0* and DS1* to low

Receive address
Receive address modifier
LWORD* high
Receive IACK* high
Receive AS* low
If address is valid for this SLAVE then select
on-board device

STORE DATA

Receive WRITE* low
Receive DS1* low
Receive DS0* low
Capture data from Iines D00-D15
Write data into selected device

RESPOND TO MASTER

Drive DTACK* to low
TERMINATE CYCLE

Receive DTACK* low
If last cycle then
Release address Iines
Release address modifier Iines
Release LWORD*
Release IACK*
Endif
Drive DS0* and DS1* to high

Drive AS* to high
END TERMINATION

If last cycle then
Release DS0* and DS1*
Release AS*
EIse go to ADDRESS THE SLAVE
Endif

ACKNOWLEDGE TERMINATION

Receive AS*, DS0*, and DS1* high

Release DTACK*

Figure 2-9. An Example Of A Double Byte Write Cycle

MASTER SLAVE
ADDRESS THE SLAVE

Present address



Present address modifier
Drive LWORD* low
Drive IACK* high
Drive AS* to low
SPECIFY DATA DIRECTION

Drive WRITE* low

SPECIFY DATA WIDTH

Wait until DTACK* high and BERR* high
(indicates that previous SLAVE is no longer
driving data bus)

Place data on D00-D31
Drive DS0* and DS1* to low

PROCESS ADDRESS

Receive address
Receive address modifier
LWORD* low
Receive IACK* high
Receive AS* low
If address is valid for this SLAVE then select
on-board device

STORE DATA

Receive WRITE* low
Receive DS1* low
Receive DS0* low
Capture data from Iines D00-D31
Write data into selected device

RESPOND TO MASTER

Drive DTACK* to low
TERMINATE CYCLE

Receive DTACK* low
If last cycle then
Release address Iines
Release address modifier Iines
Release LWORD*
Release IACK*
Endif
Drive DS0* and DS1* to high

Drive AS* to high
END TERMINATION

If last cycle then
Release DS0* and DS1*
Release AS*
EIse go to ADDRESS THE SLAVE
Endif

ACKNOWLEDGE TERMINATION

Receive AS*, DS0*, and DS1* high

Release DTACK*



Figure 2-10. An Example Of A Quad Byte Write Cycle

2.4.2 Address Pipelining

The VMEbus strobes the address and data with separate strobe signals. This allows a
MASTER to broadcast the address for the next cycle while the data transfer for the previous
cycle is still in progress. This is called “address pipelining”.

PERMISSION 2.8:
As soon as a SLAVE drives DTACK* or BERR* low, the MASTER MAY change the
address and, after driving AS* high for a minimum time, drive AS* low again.

For example, when a SLAVE drives DTACK* low on a read cycle, the MASTER can place a
new address on the address bus while it is reading the data from the bus. This amounts to an
overlapping of one cycle with the next one, and permits greater speeds on the VMEbus.

RULE 2.18:
Since address pipelining can occur, SLAVES MUST NOT be designed on the
assumption that they will never encounter pipelined cycles.

OBSERVATION 2.32:
The responding SLAVE might recognize its address and respond very quickly on the DTACK*
or BERR* lines. Since the MASTER is permitted to remove the address after the responding
SLAVE drives DTACK* or BERR* low, non-responding SLAVES might not be able to decode
the addressing information before the MASTER removes it from the bus.

SUGGESTION 2.4:
Design SLAVES to capture the addressing information on the falling edge of AS*.

OBSERVATION 2.33:
Because a MASTER might broadcast a new address while a previous cycle is finishing, the
designer needs to ensure that the assertion of the second address strobe does not invalidate
the first address if it is still needed by on-board logic to maintain the data on the bus.

PERMISSION 2.9:
MASTERS MAY be designed without the ability for address pipelining. (e.g. They MAY wait
until the responding SLAVE releases DTACK* or BERR* before driving AS* low for the next
cycle.)

OBSERVATION 2.34:
A MASTER might drive AS* low for a new cycle before it drives data strobes high from the
previous cycle. Because of this, there might be a period when the address strobe for the new
cycle, as well as at Ieast one data strobe from the previous cycle coincide during the cycle
overlap.

SUGGESTION 2.5:



To assure reliable operation, design SLAVES to initiate data transfers to and from the bus on
the falling edge of the data strobes, instead of a simultaneous low level on the address strobe
and data strobes.

2.5 DATA TRANSFER BUS ACQUISITION

RULE 2.19:
Before transferring any data on the DTB, a MASTER MUST get permission to use it.

Several MASTERS might want to use the DTB at the same time. The process which
determines which MASTER can use the DTB is called arbitration and is discussed in Chapter
3. Because arbitration is closely tied to the operation of the DTB, it is briefly described here.

Figure 2-11 provides two examples that show possible sequences when a MASTER (called
MASTER A) finishes using the DTB and allows arbitration to take place.

In Example 1, MASTER A, partway into its Iast transfer, indicates that it no Ionger needs the
DTB. It does this by having its REQUESTER release the bus busy (BBSY*) signal line. Since
MASTER A gives this early notice that the DTB will soon be available, the arbitration is done
during its Iast data transfer. The arbitration is completed and MASTER B is granted permission
to use the DTB before MASTER A has finished its cycle, but it waits until MASTER A releases
AS*. (This assures that MASTER B will not start driving the DTB before MASTER A has
finished with its Iast data transfer.)

In Example 2, MASTER A waits until after its last transfer (i.e., after AS* is released) before
releasing BBSY*. In this case the DTB is idle while the arbitration is done. MASTER B is then
granted the bus and, since AS* is already high, it begins using the DTB immediately.

RULE 2.20:
Once a MASTER’S REQUESTER releases BBSY. to high, the MASTER MUST NOT drive AS*
from high to low (i.e., it MUST NOT begin a new cycle) until its REQUESTER receives a new
bus grant.

2.6 DTB TIMING RULES AND OBSERVATIONS

This section describes the timing RULES and OBSERVATIONS that govern the behavior of
MASTERS and SLAVES. This timing information is in the form of Figures and Tables:

Table 2-17 lists a timing Table and timing diagrams that specify MASTER, SLAVE, and
LOCATION MONITOR operation.

Table 2-18 defines the various mnemonics that are used in this section.

Tables 2-19 through 2-21 specify the use of the DTB signals.



Tables 2-22 through 2-27 specify the timing parameters of the DTB. (The reference numbers
used in Tables 2-24 through 2-27 correspond to the timing parameter numbers in Tables 2-22
and 2-23.)

Figures 2-12 through 2-15 specify the timing RULES and OBSERVATIONS during address
broadcasting time.

Figures 2-16 through 2-21 specify the timing RULES and OBSERVATIONS for MASTERS,
SLAVES, and LOCATION MONITORS during data transfer time.

Figures 2-22 through 2.24 specify the timing RULES and OBSERVATIONS for MASTERS and
SLAVES between DTB cycles.

Figure 2-25 is the timing diagram for MASTER, SLAVE, and BUS TIMER during a timed-out
cycle.

Figure 2-26 shows the timing during the mastership transfer of the DTB.

Example 2 -- Arbitration AFTER The Last Data Transfer



Figure 2-11. Data Transfer Bus MASTER Exchange Sequence

In order to meet the specified timing RULES, board designers need to take into account the
worst case propagation delays of the bus drivers and receivers used on their VMEbus boards.
The propagation delay of the drivers depends on their output loads and manufacturers
specifications do not always give enough information to calculate the propagation delays under
various loads. To help the VMEbus board designer, some suggestions are offered in Chapter
6.

The OBSERVATIONS specify the timing of incoming lines signal transitions. These times can
be relied upon as Iong as the backplane loading RULES in Chapter 6 are not violated. The



RULES for the bus terminators in Chapter 6 guarantee that the timing parameters for signal
lines that are released after they have been driven, are met.

Typically, for each timing RULE there is a corresponding OBSERVATION. However, the time
that is guaranteed in the OBSERVATION might differ from the time specified by the RULE. For
example, a careful inspection of the timing diagrams shows that the MASTER is required to
provide 35 nanoseconds of address and data set-up time, but the SLAVE is only guaranteed
10 nanoseconds. This is because the address and data bus drivers are not always able to
drive the backpIane’s signal Iines completely through the threshold region from low to high until
the transition propagates to the end of the backpIane and is reflected back. The falling edge of
the address and data strobes, however, typically cross the 0.8-volt threshold without waiting for
a reflection. The resulting set-up time at the SLAVE is the MASTER’S set-up time Iess two bus
propagation times.

A special notation has been used to describe the data strobe timing. The two data strobes
(DS0* and DS1*) will not always make their transitions simultaneously. For purposes of these
timing diagrams, DSA* represents the first data strobe to make its transition (whether that is
DS0* or DS1*). The broken Iine shown while the data strobes are stable is to indicate that the
first data strobe to make a falling transition might not be the first to make its rising transition --
i.e., DSA* can represent DS0* on its falling edge and DS1* on its rising edge.

Table 2-17. Timing Diagrams That Define MASTER, SLAVE, And LOCATION
MONITOR Operation

(See Table 2-22 for timing values)

Mnemonic Type of cycles

Address
Broadcast

Timing Diag
Figure(s)

Data Transfer
Timing Diag

Figure

ADO ADDRESS-ONLY 2-12 N/A

D08(EO) Single even byte transfers
BYTE(0) READ 2-12 & 2-13 2-16
BYTE(2) READ 2-12 & 2-13 2-16
BYTE(0) WRITE 2-12 & 2-13 2-18
BYTE(2) WRITE 2-12 & 2-13 2-18

D08(EO) Single odd byte transfers
BYTE(1 ) READ 2-12 & 2-13 2-16

or BYTE(3) READ 2-12 & 2-13 2-16

D08(0) BYTE(1) WRITE 2- 12 & 2- 13 2- 18
BYTE(3) WRITE 2-12 & 2-13 2-18

D16 Double byte transfers



BYTE(0-1 ) READ 2-12 & 2-13 2-17
BYTE(2-3) READ 2-12 & 2-13 2-17
BYTE(0-1) WRITE 2-12 &-2-13 2-19
BYTE(2-3) WRITE 2-12 & 2-13 2-19

D32 Quad byte transfers
BYTE(0-3) READ 2-12 & 2-13 2-17
BYTE(0-3) WRITE 2-12 & 2-13 2-19

D08(E0):BLT Single byte block transfers
SINGLE BYTE BLOCK READ 2-12 & 214 2-16
SINGLE BYTE BLOCK WRITE 2-12 & 214 2-18

D16:BLT Double byte block transfers
DOUBLE BYTE BLOCK READ 2-12 & 2-14 2-17
DOUBLE BYTE BLOCK WRITE 2-12 & 2-14 2-19

D32:BLT Quad byte block transfers
QUAD BYTE BLOCK READ 2-12 & 2-14 2-17
QUAD BYTE BLOCK WRITE 2-12 & 2-14 2-19

D08(E0):RMW Single byte RMW transfers
BYTE(0) READ-MODIFY-WRITE 2-12 & 2-15 2-20
BYTE(1 ) READ-MODIFY-WRITE 2-12 & 2-15 2-20
BYTE(2) READ-MODIFY-WRITE 2-12 & 2-15 2-20
BYTE(3) READ-MODIFY-WRITE 2-12 & 2-15 2-20

D16:RMW Double byte RMW transfers
BYTE(0-1) READ-MODIFY-WRITE 2-12 & 2-15 2-21
BYTE(2-3) READ-MODIFY-WRITE 2-12 & 2-15 2-21

D32:RMW Quad byte RMW transfers
BYTE(0-3) READ-MODIFY-WRITE 2- 12 & 2- 15 2-21

D32:UAT Unaligned transfers
BYTE(0-2) READ 2-12 & 2-13 2-16
BYTE(1-3) READ 2-12 & 2-13 2-16
BYTE(1-2) READ 2-12 & 2-13 2-17
BYTE(0-2) WRITE 2-1 2 & 2-13 2-18
BYTE(1-3) WRITE 2-12 & 2-13 2-18
BYTE(1-2) WRITE 2-12 & 2-13 2-19

Tables 2-19, 2-20, and 2-21 show how the various signal Iines of the DTB are used to
broadcast addresses and to transfer data. These Tables are referenced by the various timing



diagrams that follow. In order to keep these Tables compact, mnemonics are used to describe
when and how the various Iines are driven. These mnemonics are defined in Table 2-18.

Table 2-18. Definitions Of Mnemonics Used In Tables 2-19, 2-20, And 2-21

Mnemonic
Description

Comments

DVBM DRIVEN VALID
BY MASTER

RULE 2.21:
The MASTER MUST drive DVBM lines to a valid
level

DLBM DRIVEN LOW BY
MASTER

RULE 2.22:
The MASTER MUST drive DLBM Iines to a low
level.

DHBM DRIVEN HIGH
BY MASTER

RULE 2.23:
The MASTER MUST drive DHBM Iines to a high
level

dhbm? DRIVEN HIGH
BY MASTER?

PERMISSION 2.10:
The MASTER MAY drive dhbm? lines high RULE
2.24:
The MASTER MUST NOT drive dhbm? lines Iow..

dxbm? DRIVEN BY
MASTER?

PERMISSION 2.11:
The MASTER MAY drive dxbm? lines, or it MAY
leave these lines undriven.
(When dxbm? lines are driven, they carry no valid
information.)

DVBS DRIVEN VALID
BY SLAVE

RULE 2.25:
The SLAVE MUST drive DVBS lines to a valid level.

dxbs? DRIVEN BY
SLAVE?

PERMISSION 2.12.
The SLAVE MAY drive dxbs? lines leave these
lines undriven., or it MAY
(When dxbs? lines are driven, they carry no valid
information.)

DVBB DRIVEN VALID
BY BOTH SLAVE

AND MASTER

RULE 2.26:
During the “read” portion of a read modify write
cycle, the SLAVE MUST drive DVBB Iines with valid
data. During the "write" portion of a read-modify-
write cycle, the MASTER MUST drive DVBB Iines
with valid data.

dxbb? DRIVEN BY
BOTH SLAVE

AND MASTER?

PERMISSION 2.13:
During the “read” portion of a read modify write
cycle, the SLAVE MAY drive dxbb? lines, or it MAY
leave them undriven. During the “write” portion of a
read-modify-write cycle, the MASTER MAY drive
dxbb? lines, or it MAY Ieave them undriven. (When
dxbb? lines are driven, they carry no valid
information.)



Table 2-19. Use Of Addressing Lines To Select A 4-Byte Group

Mnemonic Addressing
mode

A02-A15
See Note

A16-A23 A24-A31 IACK*

A16 SHORT DVBM dxbm? dxbm? dhbm?
A24 STANDARD DVBM DVBM dxbm? dhbm?
A32 EXTENDED DVBM DVBM DVBM dhbm?

Note: A01 is used in conjunction with LWORD. and the two data strobes to select which of the
four bytes within the 4-byte group is accessed. (See Table 2-20).

Table 2-20. Use Of The DS1*, DS0*, A01, And LWORD* Lines To Select The
Byte(s) Within A 4-Byte Group

Mnemonic Type of cycles DS1* DS0* A01 LWORD*

ADO ADDRESS-ONLY dhbm? dhbm? dxbm? dxbm?

D08(EO) Single even byte transfers
BYTE(O) READ or WRITE DLBM dhbm? DLBM dhbm?
BYTE(2) READ or WRITE DLBM dhbm? DHBM dhbm?

D08(EO) Single odd byte transfers
or BYTE(1) READ or WRITE dhbm? DLBM DLBM dhbm?

D08(0) BYTE(3) READ or WRITE dhbm? DHBM DLBM dhbm?

D16 Double byte transfers
BYTE(O-1 ) READ or WRITE DLBM DLBM DLBM dhbm?
BYTE(2-3) READ or WRITE DLBM DLBM DHBM dhbm?

D32 Quad byte transfers
BYTE(0-3) READ or WRITE DLBM DLBM DLBM DLBM

D08(EO)
:BLT

Single byte block transfers

SINGLE BYTE BLOCK READ
or WRITE

<---- NOTE1 ----> dhbm?

D16 :BLT Double byte block transfers
DOUBLE BYTE BLOCK READ

or WRITE
DLBM DLBM NOTE 2 dhbm?

D32:BLT Quad byte block transfers
QUAD BYTE BLOCK READ or DLBM DLBM DLBM DLBM



WRITE

D08(EO)
:RMW

Single byte RMW transfers

BYTE(0) READ-MODIFY-
WRITE

DLBM dhbm? DLBM dhbm?

BYTE(1) READ-MODIFY-
WRITE

dhbm? DLBM DLBM dhbm?

BYTE(2) READ-MODIFY-
WRITE

DLBM dhbm? DHBM dhbm?

BYTE(3) READ-MODIFY-
WRITE

dhbm? DLBM DHBM dhbm?

D16:RMW  Double byte RMW transfers
BYTE(0-1) READ-MODIFY-

WRITE
DLBM DLBM DLBM dhbm?

BYTE(2-3) READ-MODIFY-
WRITE

DLBM DLBM DHBM dhbm?

D32 :RMW Quad byte RMW transfers
BYTE(0-3) READ-MODIFY-

WRITE
DLBM DLBM DLBM DLBM

D32:UAT Unaligned transfers
BYTE(0-2) READ or WRITE DLBM dhbm? DLBM DLBM
BYTE(1-3) READ or WRITE dhbm? DLBM DLBM DLBM
BYTE(1 -2) READ or WRITE DLBM DLBM DHBM DLBM

Notes:
1. During Single byte block transfers, the two data strobes are alternately driven low . Either
data strobe might be driven low on the first transfer. If the first accessed byte Iocation is
BYTE(0) or BYTE(2), then the MASTER drives DS1* to low first. If the first accessed byte
Iocation is BYTE(1 ) or BYTE(3), then it drives DS0* to low first. A01 is valid only on the first
data transfer (i.e. until the SLAVE drives DTACK* or BERR* low the first time) and might be
either high or low depending upon which byte the single byte block transfer begins with. If the
first byte location is BYTE(0) or BYTE(1 ), then the MASTER drives A01 to low. If the first byte
location is BYTE(2) or BYTE(3), then the MASTER drives A01 to high.

An example of the use of DS0*, DS1*, A01, and LWORD* during a Single byte block transfer
cycle which starts with BYTE(2) is given below:

DS1* DS0* A01 LWORD*
First data transfer BYTE(2) DLBM DHBM DHBM dhbm?

BYTE(3) DHBM DLBM dxbm? dxbm?
BYTE(0) DLBM DHBM dxbm? dxbm?
BYTE(1) DHBM DLBM dxbm? dxbm?



Last data transfer BYTE(2) DLBM DHBM dxbm? dxbm?

2. During a Double byte block transfer, A01 is valid only on the first data transfer (i.e. until the
SLAVE drives DTACK* or BERR* low the first time) and is driven either high or low depending
upon what double byte group the double byte block transfer begins with. If the first double byte
group is BYTE(0-1 ), then the MASTER drives A01 to Iow. If the first double byte group is
BYTE(2-3), then the MASTER drives A01 to high.

Table 2-21. Use Of The Data Bus Lines To Transfer Data

Mnemonic
Type of
cycles

D24-
D31

D16-
D23

D08-
D15

D00-
D07

ADO ADDRESS-ONLY dxbm? dxbm? dxbm? dxbm?

D08(EO) Single even byte transfers
BYTE(0) READ dxbs? dxbs? DVBS dxbs?
BYTE(2) READ dxbs? dxbs? DVBS dxbs?
BYTE(0) WRITE dxbm? dxbm? DVBM dxbm?
BYTE(2) WRITE dxbm? dxbm? DVBM dxbm?

D08(EO) Single odd byte transfers
or BYTE(1) READ dxbs? dxbs? dxbs? DVBS

BYTE(3) READ dxbs? dxbs? dxbs? DVBS
D08(0) BYTE(1 ) WRITE dxbm? dxbm? dxbm? DVBM

BYTE(3) WRITE dxbm? dxbm? dxbm? DVBM

D16 Double byte transfers
BYTE(0-1) READ dxbs? dxbs? DVBS DVBS
BYTE(2-3) READ dxbs? dxbs? DVBS DVBS

BYTE(0-1 ) WRITE dxbm? dxbm? DVBM DVBM
BYTE(2-3) WRITE dxbm? dxbm? DVBM DVBM

D32 Quad byte transfers
BYTE(0-3) READ DVBS DVBS DVBS DVBS
BYTE(0-3) WRITE DVBM DVBM DVBM DVBM

D08(EO)
:BLT

Single byte block transfers

SINGLE BYTE BLOCK READ dxbs? dxbs? <----Note 1-- >
SINGLE BYTE BLOCK

WRITE
dxbm? dxbm? <--- Note 1--->

D16:BLT Double byte block transfers



DOUBLE BYTE BLOCK
READ

dxbs? dxbs? DVBS DVBS

DOUBLE BYTE BLOCK
WRITE

dxbm? dxbm? DVBM DVBM

D32:BLT Quad byte block transfers
QUAD BYTE BLOCK READ DVBS DVBS DVBS DVBS
QUAD BYTE BLOCK WRITE DVBM DVBM DVBM DVBM

D08(EO):
RMW

Single byte RMW transfers

BYTE(0) READ-MODIFY-
WRITE

dxbb? dxbb? DVBB dxbb?

BYTE(1) READ-MODIFY-
WRITE

dxbb? dxbb? dxbb? DVBB

BYTE(2) READ-MODIFY-
WRITE

dxbb? dxbb? DVBB dxbb?

BYTE(3) READ-MODIFY-
WRITE

dxbb? dxbb? dxbb? DVBB

D16:RMW Double byte RMW transfers
BYTE(0-1) READ-MODIFY-

WRITE
dxbb? dxbb? DVBB DVBB

BYTE(2-3) READ-MODIFY-
WRITE

dxbb? dxbb? DVBB DVBB

D32:RMW Quad byte RMW transfers
BYTE(0-3) READ-MODIFY-

WRITE
DVBB DVBB DVBB DVBB

D32:UAT Unaligned transfers
BYTE(0-2) READ DVBS DVBS DVBS dxbs?
BYTE(1-3) READ dxbs? DVBS DVBS DVBS
BYTE(1-2) READ dxbs? DVBS DVBS dxbs?
BYTE(0-2) WRITE DVBM DVBM DVBM dxbm?
BYTE(1-3) WRITE dxbm? DVBM DVBM DVBM
BYTE(1-2) WRITE dxbm? DVBM DVBM dxbm?

Note:
1. During Single byte block transfers, data is transferred 8 bits at a time over D00-D07 or D08-
D1 5. A single byte block read example is given below:

D08-D15 D00-D07
First data transfer DVBS dxbs?

dxbs? DVBS



DVBS dxbs?
dxbs? DVBS
DVBS dxbs?
dxbs? DVBS

Last data transfer DVBS dxbs?

Table 2-22. MASTER, SLAVE, And LOCATION MONITOR Timing Parameters

PARAMETER
NUMBER

MASTER
See also Table 2-24

SLAVE
See also Table 2-25

LOCATION MONITOR
 See also Table 2-26

MIN MAX MIN MAX MIN MAX
1 O
2 60
4 35 10 10
5 40 30 3
6 0 0
7 0 0
8 35 10 10

11 40 30 30
12 35 10 10
13 10 20 20
14 0 0
15 0 0
16 0 0
17 40 0 30
18 0 0 30
19 40 0 30
20 0 0
21 0 0
23 10 0 0

24A 0
24B 0
25 25
26 0 0
27 -25 0
28 30 2T 30
29 0 0
30 0 0
31 0 0
33 30 30

NOTES:
1. AII times are in nanoseconds.
2. T = the timeout value in microseconds.



Table 2-23. BUS TIMER, Timing Parameters (see also Table 2-27)

PARAMETER
NUMBER

MASTER

MIN MAX
28 T 2T
30 0

NOTE
T = the time-out value in microseconds.

Table 2-24. MASTER, Timing RULES And OBSERVATIONS

Note:
The numbers correspond to the timing parameters specified in Table 2-22.

1. RULE 2.27:
 When taking control of the VMEbus, the MASTER MUST NOT drive any of IACK*,
AM0-AM5, A01-A31, LWORD*, D00-D31, WRITE*, DS0*, DS1*, or AS* until after
the previous MASTER allows AS* to rise above the low level.

OBSERVATION 2.35:
Chapter 3 describes how a MASTER’S REQUESTER is granted use of the VMEbus

2. RULE 2.28:
When taking control of the VMEbus, the MASTER MUST NOT drive any of IACK*,
AM0-AM5, A01-A31 , LWORD*, D00-D31, WRITE*, DS0*, DS1*, or AS* until after its
REQUESTER is granted the bus.

OBSERVATION 2.36:
Chapter 3 describes how a MASTER’S REQUESTER is granted use of the VMEbus

3. RULE 2.29:
When taking control of the VMEbus, the MASTER MUST NOT drive AS* low until
this time after the previous MASTER allows AS* to rise above the low level.

OBSERVATION 2.37:
RULE 2.29 ensures that timing parameter 5 for SLAVES is guaranteed when there is
an interchange of the DTB mastership.

4. RULE 2.30:
The MASTER MUST NOT drive AS* low until IACK* has been high, and the required
Iines among A01-A31, AM0-AM5, and LWORD* have been valid for this minimum
time.

OBSERVATION 2.38:
Tables 2-19 and 2-20 specify the lines among A01-A31, AM0-AM5, and LWORD*
that a MASTER is required to drive.



5. RULE 2.31:
When using the DTB for two consecutive cycIes, the MASTER MUST NOT drive
AS* low until it has been high for this minimum time.

6. RULE 2.32:
After a read cycle, the MASTER MUST NOT drive any of D00-D31 until both
DTACK* and BERR* are high.

7. RULE 2.33:
During read cycles, the MASTER MUST NOT drive DSA* low until it has released all
of D00-D31.

8. RULE 2.34:
During write cycIes, the MASTER MUST NOT drive DSA* low until the required lines
among D00-D31 have been valid for this minimum time.

OBSERVATION 2.39:
Table 2-21 specifies the Iines among D00-D31 that a MASTER is required to drive.

9. RULE 2.35: The MASTER MUST NOT drive DSA* low until both DTACK* and
BERR* are high.

10. RULE 2.36:
The MASTER MUST NOT drive DSA* low until it has driven AS* Iow.

11 . RULE 2.37:
The MASTER MUST NOT drive DSA* low until DS0* and DS1* have both been
simultaneously high for this minimum time.

12. RULE 2.38:
The MASTER MUST NOT drive DSA* low until WRITE* has been valid for this
minimum time.

13. RULE 2.39:
During cycIes where the MASTER drives both data strobes low, it MUST drive DSB*
low within this maximum time after it drives DSA* low.

OBSERVATION 2.40:
Timing parameter 13 does not apply to transfers where only one data strobe is
driven Iow.

14. RULE 2.40:
During all data transfer cycIes, except read-modify-write cycles, the MASTER MUST
hold the address valid and maintain the appropriate level on LWORD* until it detects
the first falling edge on DTACK* or BERR*.

OBSERVATION 2.41:
During all data transfer cycIes, except block transfer and read-modify-write cycles,
there will be only one falling edge RULE 2.41:on DTACK* or BERR*.

15. RULE 2.41:
During read-modify-write cycIes, the MASTER MUST hold the address valid and
maintain the appropriate level on LWORD* until it detects the second falling edge on
DTACK* or BERR*.

16. RULE 2.42:
During all data transfer cycles, the MASTER MUST maintain a valid address



modifier code, and ensure that IACK* stays high until it detects the last falling edge
on DTACK* or BERR*.

OBSERVATION 2.42:
During all data transfer cycles, except block transfer and read-modify-write cycIes,
there will be only one falling edge on DTACK* or BERR*.

17. RULE 2.43:
During ADDRESS-ONLY cycles, the MASTER MUST NOT change the levels on
IACK*, A01-A31, AM0-AM5, and LWORD* for this minimum time after it drives AS*
low.

18. RULE 2.44:
During all data transfer cycIes, the MASTER MUST hold AS* low until it detects the
Iast falling edge on DTACK* or BERR*

19. RULE 2.45:
The MASTER MUST hold AS* low for this minimum time.

20. RULE 2.46:
Once a MASTER has driven DSA* low, it MUST maintain that Iine low until it detects
DTACK* or BERR* low.

21. RULE 2.47:
Once a MASTER has driven DSB* low, it MUST maintain that line low until it detects
DTACK* or BERR* low.

22. RULE 2.48:
During write cycles, once the MASTER has driven DSA* low, it MUST not change
any of D00-D31 until it detects DTACK* or BERR* low.

23. RULE 2.49:
Once a MASTER has driven DSA* low, it MUST NOT change the level on the
WRITE* Iine, until this minimum time after both data strobes are high.

24A. RULE 2.50:
IF the MASTER drives or releases AS* to high after its REQUESTER releases
BBSY*,
THEN it MUST release IACK*, AM0-AM5, A01-A31, LWORD*, D00-D31, WRITE*,
DS0* and DS1* before allowing AS* to rise above the low level.

OBSERVATION 2.43:
Chapter 3 describes how a MASTER’S REQUESTER releases the BBSY* Iine.

24B. RULE 2.51:
IF the MASTER drives or releases AS* to high before its REQUESTER releases
BBSY*,
THEN it MUST release AS*, IACK*, AM0-AM5, A01-A31, LWORD*, D00-D31,
WRITE*, DS0* and DS1* before allowing its REQUESTER to release BBSY*.

OBSERVATION 2.44:
Chapter 3 describes how a MASTER’S REQUESTER releases the BBSY* line.

25. RULE 2.52:
IF the MASTER drives or releases AS* to high after its REQUESTER releases
BBSY*,
THEN it MUST release AS* within this time after allowing it to rise above the low



level.

OBSERVATION 2.45:
Chapter 3 describes how a MASTER’S REQUESTER releases the BBSY* Iine.

26. OBSERVATION 2.46:
Timing parameter 26 guarantees that during read cycles, the data bus will not be
driven until the MASTER drives DSA* Iow.

27. OBSERVATION 2.47:
During read cycles, the MASTER is guaranteed that the data bus will be valid within
this time after DTACK* goes low. This time does not apply to cycles where the
SLAVE drives BERR* low instead of DTACK*.

28. OBSERVATION 2.48:
The MASTER is guaranteed that neither DTACK* nor BERR* will go low until this
minimum time after it drives DSA* low. The BUS TIMER guarantees the MASTER
that if DTACK* has not gone low after its timeout period has elapsed and within
twice its timeout period, then the BUS TIMER will drive BERR* low.

29. OBSERVATION 2.49:
During read cycles, the MASTER is guaranteed that the data bus will remain valid
until it drives DSA* high.

30. OBSERVATION 2.50:
Timing parameter 30 guarantees that neither DTACK* nor BERR* will go high until
the MASTER drives both DS0* and DS1* high.

31. OBSERVATION 2.51:
During read cycles, the MASTER is guaranteed that the data bus has been released
by the time DTACK* and BERR* are high.

Table 2-25. SLAVE, Timing RULES And OBSERVATIONS
Note:
The numbers correspond to the timing parameters specified in Table 2-22.

4. OBSERVATION 2.52:
All SLAVES are guaranteed that IACK*, A01-A31, AM0-AM5, and LWORD* have
been valid for this minimum time when they detect a falling edge on AS*.

5. OBSERVATION 2.53:
All SLAVES are guaranteed this minimum high time on AS* between DTB cycles.

6. OBSERVATION 2.54:
During read cycles, the responding SLAVE is guaranteed that none of D00-D31 will
be driven by any other module until the responding SLAVE releases DTACK* and
BERR* to high.

7. OBSERVATION 2.55:
During read cycles, the responding SLAVE is guaranteed that the data bus will be
released by all other modules by the time DSA* goes low.

8. OBSERVATION 2.56:
During write cycles, the responding SLAVE is guaranteed that the data bus has
been valid for this minimum time when it detects a falling edge on DSA*.

9. OBSERVATION 2.57:
The responding SLAVE is guaranteed that neither DS0* nor DS1* will go low until



DTACK* and BERR* from the previous cycle have gone high.
10. OBSERVATION 2.58:

Due to bus skew, SLAVES on the DTB might detect a falling edge on DSA* before
detecting the falling edge on AS*. However, SLAVES are guaranteed that a falling
edge on DSA* will not precede the falling edge on AS* by more than this time.

11 . OBSERVATION 2.59:
SLAVES are guaranteed this minimum time during which both data strobes are
simultaneously high between consecutive data transfers.

12. OBSERVATION 2.60:
SLAVES are guaranteed that WRITE* has been valid for this minimum time before a
falling edge on DSA*.

13. OBSERVATION 2.61:
IF both data strobes are going to be driven low,
THEN the responding SLAVE is guaranteed that DSB* will go low within this
maximum time after DSA* has gone low.

14. OBSERVATION 2.62:
During all data transfer cycles except readmodifywrite cycles, the responding SLAVE
is guaranteed that the address and LWORD* remain valid until it drives DTACK* or
BERR* low for the first time, provided that it does so within the bus timeout period.

15. OBSERVATION 2.63:
During all readmodifywrite cycles, the responding SLAVE is guaranteed that the
address and LWORD* remain valid until it drives DTACK* or BERR* low for the
second time, provided that it does so within the bus timeout period.

16. OBSERVATION 2.64:
The responding SLAVE is guaranteed that IACK* and AM0-AM5 remain valid until it
drives DTACK* or BERR* low for the last time, provided that it does so within the
bus timeout period.

17. OBSERVATION 2.65:
SLAVES are guaranteed that IACK*, A01-A31, AM0-AM5, and LWORD* will remain
valid for this minimum time after the falling edge of AS*. During ADDRESS-ONLY
cycles this time is guaranteed by the MASTER. During all other cycle types, this time
is derived from timing parameters 1 0, 1 4, 1 6, and 28.

18. OBSERVATION 2.66:
The responding SLAVE is guaranteed that AS* will remain low until it drives DTACK*
or BERR* low, provided that it does so within the bus timeout period.

19. OBSERVATION 2.67:
SLAVES are guaranteed that the AS* will remain low for this minimum time.

20. OBSERVATION 2.68:
The responding SLAVE is guaranteed that once DSA* goes low, it will remain low
until it drives DTACK* or BERR* low, provided that the SLAVE does so within the
bus timeout period.

21. OBSERVATION 2.69:
The responding SLAVE is guaranteed that once DSB* goes low, it will remain low
until it drives DTACK* or BERR* low, provided that the SLAVE does so within the
bus timeout period.

22. OBSERVATION 2.70:
During write cycles, the responding SLAVE is guaranteed that the data bus will



remain valid until it drives DTACK* or BERR* low, provided that it does so within the
bus timeout period.

23. OBSERVATION 2.71:
The responding SLAVE is guaranteed that the WRITE* line remains valid until both
data strobes are high.

26. RULE 2.53:
During read cycles, the responding SLAVE MUST NOT drive the data bus until
DSA* goes low.

27. RULE 2.54:
During read cycles, the responding SLAVE MUST NOT drive DTACK* before it
drives the data lines with valid data.

OBSERVATION 2.72:
RULE 2.54 does not apply to cycles where the responding SLAVE drives BERR* low
instead of DTACK*.

28. RULE 2.55:
The responding SLAVE MUST wait this minimum time after DSA* goes low before
driving DTACK* or BERR* low.

29. RULE 2.56:
During read cycles, once the responding SLAVE has driven DTACK* low, it MUST
NOT change D00-D31 until DSA* goes high.

30. RULE 2.57:
Once the responding SLAVE has driven DTACK* or BERR* low, it MUST NOT
release it until it detects both DS0* and DS1* high.

31. RULE 2.58:
During read cycles, the responding SLAVE MUST release all of D00-D31 before
releasing DTACK* or BERR* to high.

32. Observation 2.73:
SLAVES are guarenteed that IACK*, LWORD*, A00-A31, and AM0-AM5 have been
valid for this minimum time when they detect a falling edge on DSA*.  This time is
derived from timing parameters 4 and 10.

33. OBSERVATION 2.74:
During data transfer cycles, SLAVES are guaranteed that DS0* and/or DS1* will
remain low for at least this minimum time. This time is derived from timing parameter
28, where the responding SLAVE is required to wait a minimum time before driving
BERR* or DTACK* to low.

Table 2-26. LOCATION MONITOR, Timing Observations

Note:
The numbers correspond to the timing parameters specified in Table 2-22.

4. OBSERVATION 2.75:
The LOCATION MONITOR is guaranteed that IACK*, A01-A31 AM0-AM5, and
LWORD* have been valid for this minimum time when it detects a falling edge on
AS*.

5. OBSERVATION 2.76:



The LOCATION MONITOR is guaranteed this minimum high time on AS* between
DTB cycles.

10. OBSERVATION 2.77:
Due to bus skew, LOCATION MONITORS on the DTB might detect a falling edge on
DSA* before detecting the falling edge on AS*. However, The LOCATION
MONITOR is guaranteed that the falling edge on DSA* will not precede the falling
edge on AS* by more than this time.

11. OBSERVATION 2.78:
The LOCATION MONITOR is guaranteed this minimum time during which both data
strobes are simultaneously high between consecutive data transfers.

12. OBSERVATION 2.79:
The LOCATION MONITOR is guaranteed that WRITE* has been valid for this
minimum time when it detects a falling edge on DSA*.

13. OBSERVATION 2.80:
IF both data strobes are going to be driven low,
THEN the LOCATION MONITOR is guaranteed that DSB* will go low within this
maximum time after DSA* has gone low.

17. OBSERVATION 2.81:
The LOCATION MONITOR is guaranteed that IACK*, A01-A31, AM0-AM5, and
LWORD* will remain valid for this minimum time after the falling edge of AS*. During
ADDRESS ONLY cycles this time is guaranteed by the MASTER. During all other
cycle types, this time is derived from timing parameters 10, 14, 16, and 28.

19. OBSERVATION 2.82:
The LOCATION MONITOR is guaranteed that the AS* will remain low for this
minimum time.

23. OBSERVATION 2.83:
The LOCATION MONITOR is guaranteed that the WRITE* line remains valid until
both data strobes go high.

32. OBSERVATION 2.84:
The LOCATION MONITOR is guaranteed that IACK*, LWORD*, A01-A31, and AM0-
AM5 have been valid for this minimum time when it detects a falling edge on DSA*.

33. OBSERVATION 2.85:
During data transfer cycles, the LOCATION MONITOR is guaranteed that DS0*
and/or DS1* will remain low for at least this minimum time. This time is derived from
timing parameter 28, where the responding SLAVE is required to wait a minimum
time before driving BERR* or DTACK* to low.

Table 2-27. BUS TIMER, Timing RULES

Note:
The numbers correspond to the timing parameters specified in Table 2-23.

28. RULE 2.59:
The BUS TIMER MUST wait at least its timeout time, but no longer than twice its
timeout time, after the first data strobe goes low before driving BERR* low.

30. RULE 2.60:
Once it has driven BERR* low, the BUS TIMER MUST NOT release BERR* until it



detects both DS0* and DS1* high.

Figure 2-12. Address Broadcast Timing
ALL CYCLES

Figure 2-13. MASTER, Responding SLAVE, And LOCATI0N MONITOR
Address Broadcast Timing
Single Even Byte Transfers
Single Odd Byte Transfers

Double Byte Transfers
Quad Byte Transfers



Unaligned Transfers

Figure 2-14. MASTER, SLAVE, And LOCATION MONITOR
Address Broadcast Timing

Single Byte Block Transfers
Double Byte Block Transfers
Quad Byte Block Transfers



Figure 2-15. MASTER, SLAVE, And LOCATION MONITOR
Address Broadcast Timing
Single Byte RMW Cycles
Double Byte RMW Cycles
Quad Byte RMW Cycles

Figure 2-16. MASTER, SLAVE, And LOCATI0N MONlTOR, Data Transfer Timing
Byte(0) Read
Byte(1) Read



Byte(2) Read
Byte(3) Read

Byte(0-2) Read
Byte(1-3) Read

Single Byte Block Read

Figure 2-16b. MASTER, SLAVE, and LOCATION MONITOR Data Transfer
Timing (cont’d)
Byte(0) Read
Byte(1) Read
Byte(2) Read
Byte(3) Read

Byte(0-2) Read
Byte(1-3) Read

Single Byte Block Read



Figure 2-17. MASTER, SLAVE, and LOCATION MONITOR Data Transfer Timing
Byte(0-1) Read
Byte(2-3) Read
Byte(0-3) Read
Byte(1-2) Read

Double Byte Block Read
Quad Byte Block Read

Figure 2-17b. MASTER, SLAVE, And LOCATION MONITOR Data Transfer
Timing (cont’d)
Byte(0) Write
Byte(1 ) Write
Byte(2) Write



Byte(3) Write
Byte(0-2) Write
Byte(1-3) Write

Single Byte Block Write

Figure 2-18. MASTER, SLAVE, And LOCATI0N MONITOR Data Transfer Timing
Byte(0) Write
Byte(1) Write
Byte(2) Write
Byte(3) Write

Byte(0-2) Write
Byte(1-3) Write

Single Byte Block Write



Figure 2-18b. MASTER, SLAVE, And LOCATI0N MONITOR Data Transfer
Timing (cont’d)
Byte(0-1) Write
Byte(2-3) Write
Byte(0-3) Write
Byte(1-2) Write

Double Byte Block Write
Quad Byte Block Write

Figure 2-19. MASTER, SLAVE, And LOCATION MONITOR Data Transfer Timing
Byte(0-1) Write
Byte(2-3) Write
Byte(0-3) Write



Byte(1-2) Write
Double Byte Block Write
Quad Byte Block Write

Figure 2-19b. MASTER, SLAVE, And LOCATION MONITOR Data Transfer
Timing (cont’d)
Byte(0-1) Write
Byte(2-3) Write
Byte(0-3) Write
Byte(1-2) Write

Double Byte Block Write
Quad Byte Block Write

Figure 2-20. MASTER, SLAVE, And LOCATION MONITOR Data Transfer Timing
Single Byte RMW Cycles



Figure 2-21 . MASTER, SLAVE, And LOCATION MONITOR Data Transfer Timing
Double Byte RMW Cycles
Quad Byte RMW Cycles

Figure 2-22. Address Strobe Intercycle Timing



Figure 2-23. Data Strobe Intercycle Timing
A cycle where both data strobes go low followed

by a cycle where one or both data strobes go low.

Figure 2-24. Data Strobe Intercycle Timing
A cycle where one data strobe goes low followed by a

cycle where one or both data strobes go low



Figure 2-25. MASTER, SLAVE, And BUS TIMER Data Transfer Timing
Timed-Out Cycle

Figure 2-26. MASTER DTB Control Transfer Timing



CHAPTER 3

DATA TRANSFER BUS ARBITRATION

3.1 BUS ARBITRATION PHILOSOPHY

As microprocessor costs decrease, it is becoming more cost effective to design systems with
multiple processors sharing global resources.

The most fundamental of these global resources is the Data Transfer Bus through which all
other global resources are accessed. Therefore, any system that supports multiprocessing
needs to provide an efficient allocation method for the Data Transfer Bus. Because speed of
allocation is vital, a hardware allocation scheme is the only practical alternative. The VMEbus
meets this need with its Arbitration subsystem. (See Figure 3-1).

The VMEbus arbitration subsystem:

a. Prevents simultaneous use of the bus by two MASTERS.
b. Schedules requests from multiple MASTERS for optimum bus use.

Figure 3-1.  Arbitration Bus Functional Block Diagram

3.1.1 Types Of Arbitration

When several boards request use of the DTB simultaneously, the arbitration subsystem
detects these requests and grants the bus to one board at a time. The decision of which board
is granted the bus first depends upon what scheduling algorithm is used. Many algorithms are
possible. The VMEbus describes three: prioritized, round-robin, and single level.



Prioritized arbitration assigns the bus according to a fixed priority scheme where each of four
bus request lines has a priority from highest (BR3*) to lowest (BR0*).

Round-robin arbitration assigns the bus on a rotating priority basis. When the bus is granted to
the REQUESTER on bus request line "BR(n)*" then the highest priority for the next arbitration
is assigned to bus request line "BR(n-1)*".

Single level arbitration only accepts requests on BR3*, and relies on BR3*’s bus grant daisy-
chain to arbitrate the requests.

PERMISSION 3.1:
Scheduling algorithms other than priority, round-robin, or single level MAY be used. For
example, an ARBlTER’S algorithm might give highest priority to BR3*, but grant the bus to
BR0* through BR2* on a round-robin basis.

3.2 ARBITRATION BUS LINES

The Arbitration Bus consists of six bused VMEbus lines and four daisy-chained lines. These
daisy-chained lines require special signal names. The signals entering each board are called
“Bus Grant IN” lines (BGxIN*), while the signals leaving each board are called “Bus Grant
OUT” lines (BGxOUT*). The lines which leave slot n as BGxOUT* enter slot n+1 as BGxIN*.
This is illustrated in Figure 3-2.

OBSERVATION 3.1:
In all descriptions in this chapter, the terms BRx*, BGxIN*, and BGxOUT* are used to describe
the bus request and bus grant lines, where x takes on any value from zero to three.

In the VMEbus arbitration system, a REQUESTER module drives the following lines:

1 bus request line (one of BR0* through BR3*)
1 bus grant out line (one of BG0OUT* through BG3OUT*)
1 bus busy line (BBSY*)

RULE 3.1:
IF a VMEbus board does not generate bus requests on some bus request levels,
THEN it MUST propagate the daisy-chain signals for those levels from its BGxIN* lines to its
respective BGxOUT* lines.

PERMISSION 3.2:
The propagation for the unused lines of the bus grant daisy-chain can be done using jumpers
or active logic. The latter approach allows selection of the request level under software control,
while the former results in faster propagation through the daisy-chain.

Three types of ARBITERS are described in the VMEbus standard. They are:

PRIoritized (PRl)



Round-Robin-Select (RRS)
SinGLe level (SGL)

The operation of these three types of ARBITERS is described in Section 3.3.

A PRI ARBlTER drives the following:

1 bus clear line (BCLR*)
4 bus grant lines (Slot 1 BG0IN* through BG3IN*) if the ARBITER’S board also

has a REQUESTER.
(Slot 1 BG0OUT* through BG3OUT*) if the ARBlTER’S board
does not have a REQUESTER.

An RRS ARBITER drives the four Slot 1 BGxIN* or BGxOUT* lines and, optionally, the BCLR*
line.

A SGL ARBlTER drives only BG3IN* or BG3OUT* at slot 1.



Figure 3-2. Illustration Of The Daisy Chained Bus Grant Lines



Two additional lines are connected with the arbitration system during power-up and power-
down sequencing: SYSRESET*, and ACFAIL*. While their impact on the arbitration system is
included in this chapter, these lines will be discussed further in Chapter 5.

3.2.1 Bus Request And Bus Grant Lines

The bus request lines are used by each REQUESTER to request use of the DTB. The bus
grant lines allow the ARBITER to award use of the bus. It does this by driving a bus grant
daisy-chain line low. This low level propagates down the daisy-chain, typically passing through
several boards in the process. If a board never uses a particular request/grant level, the signal
is passed through that board. Where the board uses a request/grant level x, the corresponding
signal BGxIN* is gated on board. If its on-board REQUESTER is currently requesting the DTB
on that level, it does not pass the low level on to its BGxOUT*. Otherwise, it passes on the low
level.

RULE 3.2:
IF a VMEbus backplane slot is not occupied by a board, and if there are boards farther down
the daisy-chain,
THEN jumpers MUST be installed at the empty slot to pass through the daisy-chain signal.

OBSERVATION 3.2:
The backplane mechanical specification in Chapter 7 describes a provision for the installation
of jumpers at each slot.

RULE 3.3:
The ARBITER MUST always be located in slot 1.

3.2.2 Bus Busy Line (BBSY*)

Once a REQUESTER has been granted control of the Data Transfer Bus via the bus grant
daisy-chain, it drives BBSY* low. It then has control of the DTB until it releases BBSY*,
allowing the ARBITER to grant the DTB to some other REQUESTER.

3.2.3 Bus Clear Line (BCLR*)

The PRI ARBITER drives BCLR* low to inform the MASTER, currently in control of the DTB,
when a higher priority request is pending. The current MASTER does not have to relinquish
the bus within any prescribed time limit. It can continue transferring data until it reaches an
appropriate stopping point, and then allow its on-board REQUESTER to release BBSY*.

PERMISSION 3.3:
Although RRS ARBITERS are not required to drive the BCLR* line they MAY do so.

SUGGESTION 3.1:
IF a RRS ARBITER drives the BCLR* line low,
THEN design it to do so whenever there is a request pending on any of the nongranted bus
request lines.



3.3 FUNCTIONAL MODULES

The arbitration subsystem is composed of several modules:
a. One ARBlTER
b. One or more REQUESTERS

Figures 3-3 and 3-4 provide block diagrams for the two types of Arbitration Bus modules.

RULE 3.4:
Output signal lines shown with solid lines in Figure 3-3 and 3-4 MUST be driven by the
module, unless it would always drive them high.

RULE 3.5:
input signal lines shown with solid lines in Figures 3-3 and 3-4 MUST be monitored and
responded to in the appropriate fashion.

OBSERVATION 3.3:
RULES and PERMISSIONS for driving and monitoring the signal lines shown with dotted lines
in Figures 3-3 and 3-4 are given in Tables 3-1 and 3-2.

OBSERVATION 3.4:
IF an output signal line is not driven,
THEN terminators on the backplane ensure that it is high.

OBSERVATION 3.5:
Although SYSRESET* and ACFAIL* are not specified as part of the Arbitration Bus, they are
important here because MASTERS, which are paired with REQUESTERS, respond to these
signal lines. (SYSRESET* and ACFAIL* are driven by the POWER MONITOR module which is
discussed in Chapter 5.)

3.3.1 ARBITER

The ARBITER is a functional module that decides which REQUESTER should be granted
control of the DTB when several request it simultaneously. There are many possible algorithms
that could be used to make this decision. Three types of ARBITERS are described in this
specification: a prioritized (PRI) ARBITER, a round robin select (RRS) ARBITER, and a single
level (SGL) ARBITER.

An ARBlTER responds to incoming bus requests and grants the DTB to the appropriate
REQUESTER with one of the bus grant lines.

When the ARBITER detects BBSY* high, and after it detects one or more bus requests, it
issues a bus grant, corresponding to the highest priority bus request.

When the REQUESTER receives the bus grant, it drives BBSY* low and signals to its on-
board MASTER or INTERRUPT HANDLER that it has been granted the DTB. After its on-



board MASTER or INTERRUPT HANDLER finishes using the DTB, the REQUESTER
releases BBSY*. The resulting rising edge of BBSY* enables the ARBITER to issue another
bus grant, based upon the levels of the bus request lines at that time.

In addition to the arbitration provided by the ARBITER, a secondary level of arbitration is
provided by the bus grant daisy-chains. Because of these daisy-chains, REQUESTERS
sharing a common request line are prioritized by slot position. The REQUESTER closest to
slot 1 has the highest priority.

SGL ARBITERS respond only to bus requests on BR3* and depend on the BG3IN*/BG30UT*
daisy-chain to do the arbitration.

The PRI ARBITER prioritizes the four bus request lines, from BR0* (the lowest) to BR3* (the
highest), and responds with BG0IN* through BG3IN*, as appropriate. A PRI ARBlTER also
informs any MASTER, currently in control of the bus, when a higher level request is pending by
driving BCLR* low.

To visualize an RRS ARBITER, consider a mechanical switch being driven by a stepping
motor. Each position on the switch connects a bus request line to its corresponding bus grant
line. When the bus is busy, the switch is stopped on the current level. Upon release of the bus,
the switch steps one position lower (i.e., from BR(n)* to BR(n-1)*) and tests for a request. It
continues this scanning operation until a request is found, sending a bus grant over the
appropriate line.

PERMISSION 3.4:
An ARBITER MAY be designed with built-in time-out feature that causes it to withdraw a bus
grant if BBSY* is not driven low by a REQUESTER within a prescribed time.

OBSERVATION 3.6:
The time used by the ARBITER allowed by PERMISSION 3.4 needs to be longer than the
longest possible bus grant daisy-chain propagation delay time, plus the time the slowest
REQUESTER takes to generate BBSY*.

RULE 3.6:
Except for a time-out situation where no REQUESTER responds, once the ARBlTER grants
the bus to a REQUESTER it MUST NOT generate a new bus grant before that REQUESTER
generates a rising edge on the BBSY* line. (The REQUESTER generates a rising edge by
driving BBSY* low and then releasing it.)

OBSERVATION 3.7:
IF an ARBITER uses a “snapshot” of the request lines taken prior to the rising
edge of BBSY*,
THEN it might grant the bus to a REQUESTER that has since removed its request.

Note: The RULES and PERMISSIONS for monitoring and driving the dotted lines are given in
Table 3-1.



Figure 3-3. Block Diagram: ARBITER



Table 3-1. RULES And PERMISSIONS That Specify The Use Of The Dotted Lines By The
Various Types Of ARBITERS Defined By This Document

Type of ARBITER Use of dotted line
SGL MUST drive slot 1 BG3IN*.

MUST ensure slot 1 BG0IN*-BG2IN* are high.
MUST monitor BR3*.
MAY or MAY not drive BCLR*, or slot 1 BG0IN*-BG2IN
MAY or MAY not monitor BR0*-BR2*.

RRS MUST drive slot 1 BG0IN*- BG3IN*.
MUST monitor BR0*-BR3*.
MAY or MAY not drive BCLR*.

PRI MUST drive slot 1 BG0IN*-BG3IN*, and BCLR*.
MUST monitor BR0*-BR3*.

3.3.2 REQUESTER

Each REQUESTER in the system:

a. Monitors the DEVICE WANTS BUS from its on-board MASTER or INTERRUPT HANDLER
and generates a bus request when the DTB is needed.

b. If it detects a low level on its BGxIN* line, and its on-board MASTER or INTERRUPT
HANDLER does not need the DTB, then it passes on that low level to its BGxOUT*

c. If it detects a low level on its BGxIN* line, and its on-board MASTER or INTERRUPT
HANDLER needs the DTB, it generates an on-board DEVICE GRANTED BUS signal to
indicate the DTB is available, and drives the BBSY* signal low.

Two types of REQUESTERS are described in this specification: a Release When Done (RWD)
REQUESTER and a Release On Request (ROR) REQUESTER.

The RWD REQUESTER releases BBSY* when the MASTER or INTERRUPT HANDLER
drives the on-board DEVICE WANTS BUS signal false.

The ROR REQUESTER does not release BBSY* when its on-board DEVICE WANTS BUS
signal goes false unless some other REQUESTER on the bus drives one of the bus request
lines Iow. It monitors the four bus request lines and releases BBSY* only if another bus
request is pending. ROR REQUESTERS reduce the number of arbitrations initiated by a
MASTER which is generating a large percentage of the bus traffic. See Figure 3-4.

Assuming that the REQUESTER’S DEVICE WANTS BUS input is true, when it receives a bus
grant it does 3 things:

a. It drives BBSY* to low.
b. It releases its low on BRx.



c. It drives the DEVICE GRANTED BUS on-board signal true, allowing the MASTER or
INTERRUPT HANDLER to initiate bus transfers.

These events might occur in any order. It is even possible, although meaningless, that the
MASTER or INTERRUPT HANDLER might not use the bus in response to this particular grant.

However, the following RULES apply:

RULE 3.7:
The REQUESTER MUST drive BBSY* to low for at least 90 nanoseconds.

RULE 3.8:
The REQUESTER MUST release bus request to high.

RULE 3.9:
The REQUESTER MUST maintain BBSY* low for at least 30 nanoseconds after it releases its
bus request.

OBSERVATION 3.8:
The 30 nanosecond delay between the bus request’s rising edge and the BBSY* rising edge
ensures that the ARBITER does not mistakenly interpret the old bus request as a new one and
issue another grant.

RULE 3.10:
The REQUESTER MUST hold BBSY* low until its bus grant goes high.

OBSERVATION 3.9:
RULE 3.10 ensures that the BBSY* transition to low has been seen by the ARBITER and that
all segments of the bus grant daisy-chain have returned to high, in preparation for the next
arbitration.

PERMISSION 3.5:
IF a REQUESTER has a bus request pending and, if it sees some other REQUESTER drive
BBSY* low,
THEN it MAY withdraw its request by releasing the bus request line.

RULE 3.1 1:
IF a REQUESTER withdraws a bus request without having first been granted the bus,
THEN it MUST wait to do so until BBSY* goes low and it MUST do so within 50 nanoseconds
after BBSY* goes low.

SUGGESTION 3.2:
Design REQUESTERS so that they pass on the bus grant daisy-chain as fast as
possible after receipt of a bus grant. This will improve system performance.

Note: The RULES and PERMISSIONS for monitoring the dotted lines are given in Table 3-2.



Figure 3-4. Block Diagram: REQUESTER

Table 3-2. RULES and PERMISSIONS That Specify The Use Of The Dotted Lines By The
Various Types Of REQUESTERS Defined By This Document

Type of REQUESTER Use of dotted line
RWD MAY or MAY not monitor BR0*-BR3*.
ROR MUST monitor BR0*-BR3*.

3.3.3 Data Transfer Bus MASTER

3.3.3.1 Release Of The DTB



The bus arbitration protocol determines how and when the DTB is granted to the various
MASTERS and INTERRUPT HANDLERS in the system. It does not, however, control when
MASTERS and INTERRUPT HANDLERS release the DTB.

MASTERS and INTERRUPT HANDLERS use several criteria in deciding when to release the
DTB. INTERRUPT HANDLERS give up the bus after their interrupt acknowledge cycle.
MASTERS give up the bus when they finish their data transfers.

Some MASTERS also monitor the ACFAIL* and BCLR* VMEbus signals. Both of these signals
inform the MASTER that the DTB is needed for some higher priority activity. In the case of
BCLR*, the MASTER’S design determines how long it takes to release the bus. For example, a
MASTER on a disk controller board might not be able to relinquish the bus during a disk sector
transfer without loss of data, so it might keep the bus until the sector transfer is finished.
ACFAIL* informs the MASTER that an an AC power loss has been detected, and whatever
problems the MASTER will face in surrendering the bus are insignificant compared to the
needs of the total system.

RECOMMENDATION 3.1:
Design MASTERS to release the DTB within 200 microseconds after ACFAIL* goes low,
except to participate in the ensuing power failure activities.

OBSERVATION 3.10:
The 200 microsecond specified in RECOMMENDATION 3.1 is intended to provide time for an
orderly shut-down of the system.

Whatever criteria are used to decide when to release the DTB, arbitration is done before some
other MASTER or INTERRUPT HANDLER begins using it. This arbitration takes place either
during the last data transfer or after that transfer, depending on how much notice the MASTER
or INTERRUPT HANDLER gives to its on-board REQUESTER.

PERMISSION 3.6:
MASTERS and INTERRUPT HANDLERS MAY release the DTB either during or after their last
data transfer.

For example, if the MASTER notifies its on-board REQUESTER that it no longer wants the bus
during its last data transfer, the REQUESTER releases BBSY* and arbitration takes place
during the last transfer. But if the MASTER waits until the last transfer has completed before
signaling its on-board REQUESTER, the DTB remains idle while the arbitration is done. (This
was illustrated in Section 2.5.1)

Chapters 2 and 4 contain RULES that pertain to the release of the DTB.

SUGGESTION 3.3:
Design block transfer MASTER boards so that they signal their REQUESTER to release
BBSY* during the last data strobe of the block transfer. If it is released at the beginning of the
block transfer, high priority bus requests initiated during the block transfer might not be taken
into account by the ARBITER until the next arbitration cycle.



3.3.3.2 Acquisition Of The DTB

To ensure that no DTB line is ever driven to opposite states by two MASTERS or INTERRUPT
HANDLERS, when these modules take control of the DTB they are constrained by the
following rule:

RULE 3.1 2:
When a MASTER or INTERRUPT HANDLER is given control of the DTB by its onboard
REQUESTER, it MUST wait until it detects AS* high before turning on its DTB drivers.

OBSERVATION 3.11:
IF the previous MASTER or INTERRUPT HANDLER releases the bus DURING its last data
transfer,
THEN RULE 3.12 ensures that the data transfer will be finished before the new MASTER or
INTERRUPT HANDLER starts using the DTB. (If the previous MASTER or INTERRUPT
HANDLER waited until the data transfer was finished before releasing the bus, AS* will already
be high.)

3.3.3.3 Other Information

RECOMMENDATION 3.2:
To allow for prompt servicing of interrupt requests and for optimum use of the DTB, design
MASTERS so that they release the DTB as soon as possible after they detect BCLR* Iow.

PERMISSION 3.7:
A MASTER or INTERRUPT HANDLER MAY have more than one REQUESTER, where each
REQUESTER generates bus requests on a different bus request line.

OBSERVATION 3.12:
Where a MASTER or INTERRUPT HANDLER has two or more REQUESTERS, it can do high
priority data transfers using one REQUESTER and low priority transfers using another
REQUESTER.

3.4 TYPICAL OPERATION

3.4.1 Arbitration Of Two Different Levels Of Bus Request

Figures 3-5 and 3-6 illustrate the sequence of events that takes place when two
REQUESTERS send simultaneous bus requests to a PRl ARBITER on different bus request
lines. When the sequence begins, each of the REQUESTERS drives its respective bus request
line low (REQUESTER A drives BR1* and REQUESTER B drives BR2*). The ARBITER
detects BR1* and BR2* low simultaneously, and it drives BG2IN* low to its own slot (slot 1 ).
That BG2IN* signal is monitored by REQUESTER B (also in slot 1). When REQUESTER B
detects BG2IN* low, it responds by driving BBSY* low. REQUESTER B then releases the
BR2* line and informs its own MASTER (MASTER B) that the DTB is available. When BBSY*
goes low, the ARBlTER drives BG2IN* of slot 1 high.



When MASTER B completes its data transfer(s), and signals that fact by driving DEVICE
WANTS BUS false, REQUESTER B releases BBSY*, provided that its BG2IN* has been
received high and 30 nanoseconds have elapsed since it released BR2*.

The ARBITER interprets the release of BBSY* as a signal to arbitrate any current bus
requests. Since BR1* is the only bus request being driven low, the ARBITER grants the DTB to
REQUESTER A by driving BG1IN* low. REQUESTER A responds by driving BBSY* low.
When MASTER A completes its data transfer(s) and signals that fact by driving DEVICE
WANTS BUS false, REQUESTER A releases BBSY*, provided that its BG1IN* has been
received high and 30 nanoseconds have elapsed since it released BR1*.

In this example, since no bus request lines are low when REQUESTER A releases BBSY*, the
ARBlTER waits until it detects a bus request.

OBSERVATION 3.13:
The description illustrated in Figures 3-5 and 3-6 would hold for both PRl and RRS ARBITERS,
unless we consider an RRS ARBITER where the last active request was level BR2*. In this
case, the ARBITER would process the BR1* request first and then proceed to the BR2*
request.

OBSERVATION 3.14:
BBSY* and the bus grants are fully interlocked as shown in Figure 3-6:

1) The ARBITER does not drive the bus grant high until it detects BBSY* low.
2) The REQUESTER does not release BBSY* to high until it detects the bus grant high.
3) The ARBITER does not drive the next bus grant low until it detects BBSY* high.
4) The next REQUESTER does not drive BBSY* low until it detects the bus grant low.

Note: DEVICE WANTS BUS and DEVICE GRANTED BUS are on-board signals between the
MASTER and its REQUESTER. (See Figure 3-4)



Figure 3-5. Arbitration Flow Diagram
Two REQUESTERS, Two Request Levels (Sheet 1 Of 2)



Figure 3-5b. Arbitration Flow Diagram
Two REQUESTERS, Two Request Levels (Sheet 2 Of 2)

Note: In this example each REQUESTER maintains its bus request line low until it is granted
the DTB. In some cases a REQUESTER might release its bus request line without receiving a
bus grant (see Section 3.3.2).



Figure 3-6. Arbitration Sequence Diagram
Two REQUESTERS, Two Request Levels

3.4.2 Arbitration Of Two Bus Requests On The Same Bus Request Line

Figures 3-7 and 3-8 illustrate the sequence of events which takes place when an ROR
REQUESTER and an RWD REQUESTER send simultaneous requests to a PRI ARBlTER on
a common bus request line. In this example, the ARBITER and RWD REQUESTER are
located on the system controller board in slot 1, with the ROR REQUESTER located in slot 2.
When the sequence begins, both of the REQUESTERS drive BR1* low simultaneously. The
ARBITER then drives BG1IN* low to its own slot (slot 1). That BG1IN* signal is monitored by
REQUESTER A (also in slot 1). When REQUESTER A detects BG1IN* low, it responds by
driving BBSY* low. REQUESTER A then releases BR1* and informs MASTER A that the DTB
is available.

OBSERVATION 3.15:



Even though REQUESTER A releases BR1*, REQUESTER B continues to drive it low (see
Figures 3-7 and 3-8).

After detecting BBSY* low, the ARBlTER drives BG1IN* high. When MASTER A has
completed its data transfer(s), it drives DEVICE WANTS BUS false. When REQUESTER A
detects this, and when the 30 nanoseconds delay since the release of BR1* has been
satisfied, REQUESTER A releases BBSY*.

The ARBlTER interprets the release of BBSY* as a signal to arbitrate any current bus
requests. Since the BR1* line is still low, the ARBITER drives BG1IN* low again. When
REQUESTER A detects BG1IN* low, it drives its BG1OUT* low because it does not need the
DTB. REQUESTER B then detects the low on its BG1IN* and responds by driving BBSY* low.
When the ARBlTER detects the low on BBSY*, it drives BG1IN* high, which causes
REQUESTER A to drive its BG1OUT* high.

Some time later, when MASTER B has finished its data transfers, it drives DEVICE WANTS
BUS false, indicating that it has finished using the DTB.

Since REQUESTER B is an ROR REQUESTER, it does not release BBSY*, but keeps it
driven low. In the event that MASTER B needs to use the DTB again, no arbitration will be
required. In this example, however, REQUESTER A drives BR1* low, indicating a need to use
the DTB, and REQUESTER B (which is monitoring the bus request lines) releases the BBSY*
line. The ARBlTER then grants the DTB to REQUESTER A.

Note: DEVICE WANTS BUS and DEVICE GRANTED BUS are on-board signals between the
MASTER and its REQUESTER. (See Figure 3-4)



Figure 3-7. Arbitration Flow Diagram
Two REQUESTERS, Same Request Level (Sheet 1 Of 3)



Figure 3-7b. Arbitration Flow Diagram
Two REQUESTERS, Same Request Level (Sheet 2 Of 3)



Figure 3-7c. Arbitration Flow Diagram
Two REQUESTERS, Same Request Level ( Sheet 3 of 3 )

3.5 RACE CONDITIONS BETWEEN MASTER REQUESTS AND ARBITER GRANTS

Suppose that there are two REQUESTERS: REQUESTER A and REQUESTER B, that share
a common bus request line. REQUESTER B, which is farther down the daisy-chain, requests
the bus and the ARBlTER drives the corresponding bus grant line low. This bus grant arrives
at REQUESTER A just as MASTER A signals that it wants the bus. If REQUESTER A is
improperly designed, this situation might cause it to momentarily drive its BGxOUT* line low
and then high again resulting in a low-going transient.

RULE 3.13:
REQUESTERS MUST be designed to ensure that no momentary low-going transients are
generated on their BGxOUT* out line.



OBSERVATION 3.16:
If the REQUESTER is designed such that it latches the state of the on-board DEVICE WANTS
BUS line upon the falling edge of its bus grant in line, and if that signal is in transition when the
falling edge occurs, the outputs of the latch will sometimes oscillate, or remain in the threshold
region between the high and low levels, for a short time. Because of this, the VMEbus
specification does not set a time limit for the REQUESTER to pass along the bus grant. It only
prohibits the REQUESTER from generating a low-going transient on its BGxOUT* line which
might be interpreted as a bus grant by a REQUESTER further down the daisy-chain.

PERMISSION 3.8:
IF a REQUESTER detects that its on-board MASTER needs the bus between the time that it
receives a bus grant intended for another REQUESTER and the time it would pass that bus
grant on,
THEN it MAY treat the bus grant as its own. In this case the other REQUESTER will maintain
its bus request until another bus grant is issued.

Note: In this example each REQUESTER maintains its bus request line low until it is granted
the DTB. In some cases a REQUESTER might release its bus request line without receiving a
bus grant (see Section 3.3.2).



Figure 3-8. Arbitration Sequence Diagram
Two REQUESTERS, Same Request Level



CHAPTER 4

PRIORITY INTERRUPT BUS

4.1 INTRODUCTION

The VMEbus includes a Priority interrupt Bus which provides the signal lines needed to
generate and service interrupts. Figure 4-1 shows a typical VMEbus system. INTERRUPTERS
use the Priority Interrupt Bus to send interrupt requests to INTERRUPT HANDLERS which
respond to these requests.

Any system which has interrupt capability includes software routines that are called interrupt
service routines, and are invoked by the interrupts. interrupt subsystems can be classified into
two groups:

a. Single handler systems, which have only one INTERRUPT HANDLER that receives and
services all bus interrupts.
b. Distributed systems, which have two or more INTERRUPT HANDLERS that receive and
service bus interrupts.

Figure 4-1.  Priority Interrupt Bus Functional Block Diagram

4.1.1 Single Handler Systems

In a single handler system, all interrupts are received by one INTERRUPT HANDLER, and all
interrupt service routines are executed by one processor. Figure 4-2 shows the interrupt
structure of a single handler system. This type of architecture is well suited to machine or
process control applications, where a supervisory processor co-ordinates the activities of



dedicated processors. The dedicated processors are typically interfaced to the machine or the
process being controlled.

The supervisory processor is the destination for all bus interrupts, servicing them in a
prioritized manner. The dedicated processors are not required to service interrupts from the
bus, and can give primary attention to controlling a machine or process.

4.1.2 Distributed Systems

Figure 4-3 shows the interrupt structure of a distributed system. This system includes two or
more INTERRUPT HANDLERS, each servicing only a subset of the bus interrupts. In a typical
implementation, each of the INTERRUPT HANDLERS resides on a different processor board.
This type of architecture is well suited to distributed computing applications, where multiple,
co-equal processors execute the application software. As each of the co-equal processors
executes part of the system software, it might need to communicate with the other processors.
In the distributed system, each processor services only those interrupts directed to it,
establishing dedicated communication paths among all processors.



Figure 4-2. Interrupt Subsystem Structure: Single Handler System



Figure 4-3. Interrupt Subsystem Structure: Distributed System

4.2 PRIORITY INTERRUPT BUS LINES

The Data Transfer Bus, the Arbitration Bus and the Priority Interrupt Bus are all used in the
process of generating and handling bus interrupts.

The following discussion of the Priority Interrupt Bus assumes that the reader
understands the operation of the Data Transfer Bus  described in Chapter 2, and the
Arbitration Bus described in Chapter 3.

The Priority Interrupt Bus consists of seven interrupt request signal lines, one interrupt
acknowledge line, and one interrupt acknowledge daisy-chain:

IRQ1* Interrupt Request 1
IRQ2* Interrupt Request 2



IRQ3* Interrupt Request 3
IRQ4* Interrupt Request 4
IRQ5* Interrupt Request 5
IRQ6* Interrupt Request 6
IRQ7* Interrupt Request 7
IACK* Interrupt Acknowledge
IACKIN*/IACKOUT* Interrupt Acknowledge Daisy-Chain

4.2.1 Interrupt Request Lines

INTERRUPTERS request interrupts by driving an interrupt request line low. In a single handler
system, these interrupt request lines are prioritized, with IRQ7* having the highest priority.

4.2.2 Interrupt Acknowledge Line

The IACK* line runs the full length of the backplane and is connected to the IACKIN* pin of slot
1 (see Figure 4-4). When driven low, the IACKIN* pin causes the IACK DAISY-CHAIN
DRIVER, located in slot 1, to propagate a falling edge down the interrupt acknowledge daisy-
chain.

4.2.3 Interrupt Acknowledge Daisy-Chain - IACKIN*/IACKOUT.

Each of the seven interrupt request lines can be shared by two or more INTERRUPTER
modules. The interrupt acknowledge daisy-chain assures that only one INTERRUPTER
responds to the interrupt acknowledge cycle. This daisy-chain line passes through each board
on the VMEbus. Each INTERRUPTER that is driving an interrupt request line low waits for a
falling edge to arrive at its IACKIN* daisy-chain input. Only upon receiving this falling edge
does an INTERRUPTER respond to an interrupt acknowledge cycle. It does not pass the
falling edge on down the daisychain, preventing other INTERRUPTERS from responding to the
interrupt acknowledge cycle.

RULE 4.1:
IF a VMEbus backplane slot is not occupied by a board, and if there are boards farther down
the interrupt acknowledge daisy-chain,
THEN jumpers MUST be installed at the empty slot to pass through the daisy-chain signal.



Figure 4-4. IACKIN*/IACKOUT* DAISY-CHAIN

4.3 PRIORITY INTERRUPT BUS MODULES - BASIC DESCRIPTION

There are three types of functional modules associated with the Priority Interrupt Bus.
INTERRUPTERS, INTERRUPT HANDLERS, and IACK DAISY-CHAIN DRIVERS. The
capabilities of INTERRUPT HANDLERS and INTERRUPTERS are described by a list of
mnemonics that show what interrupt acknowledge cycle types they can generate and accept,
respectively.

Sections 4.3.1 through 4.3.3 provide block diagrams for the three types of Priority Interrupt Bus
modules: INTERRUPT HANDLER, INTERRUPTER, and IACK DAISY-CHAIN DRIVER.

RULE 4.2:



Output signal lines shown with solid lines in Figures 4-5 through 4-7 MUST be driven by the
module, unless it would always drive them high.

OBSERVATION 4.1:
IF an output line is not driven,
THEN terminators on the backplane ensure that it is high.

RULE 4.3:
Input signal lines shown with solid lines in Figures 4-5 through 4-7 MUST be monitored and
responded to in the appropriate fashion.

OBSERVATION 4.2:
RULES and PERMISSIONS for driving and monitoring signal lines shown with dotted lines in
Figures 4-5 and 4-6, are given in Tables 4-1 and 4-2.

4.3.1 INTERRUPT HANDLER

The INTERRUPT HANDLER is used to accomplish several tasks:
a. It prioritizes the incoming interrupt requests within its assigned group of interrupt request
lines (highest of IRQ1*-IRQ7*).
b. It uses its on-board REQUESTER to request the DTB and, when granted use of the DTB,
initiates an interrupt acknowledge cycle, reading a STATUS/ID from the INTERRUPTER being
acknowledged.
c. It initiates the appropriate interrupt servicing sequence, based on the information received in
the STATUS/ID.

OBSERVATION 4.3:
The VMEbus specification does not dictate what will happen during the interrupt servicing
sequence. Servicing of the interrupt might or might not involve use of the VMEbus.

The INTERRUPT HANDLER uses the DTB to read a STATUS/ID from the INTERRUPTER. In
this respect, the INTERRUPT HANDLER acts like a MASTER and the INTERRUPTER acts
like a SLAVE. However, there are four important differences. The INTERRUPT HANDLER:

a. always drives IACK* low.
b. is not required to drive the address modifier lines.
c. only uses the lowest three address lines (A01-A03).
d. never drives the data bus.

The INTERRUPT HANDLER always drives IACK* low when it accesses the bus. The
MASTER either drives it high or does not drive it at all.

The INTERRUPT HANDLER does not have to drive the address modifier lines with a valid
code, and it only drives the lowest three address lines (A01-A03) with valid information. The
levels of these three address lines indicate which of the seven interrupt request lines is being
acknowledged, as shown in Table 4-7. A MASTER drives 15, 23, or 31 address lines



(depending on the addressing mode) with the address of the SLAVE being accessed, and
provides an address modifier code on the address modifier lines.

The INTERRUPT HANDLER does not drive the data lines (i.e., it does not ,,write,, to the
INTERRUPTER) and does not have to drive the WRITE* line. A MASTER uses the data lines
to a SLAVE bidirectionally and, during normal use, drives WRITE* low or high as required.

A block diagram of the INTERRUPT HANDLER is shown in Figure 4-5.

Note: The RULES and PERMISSIONS for monitoring and driving the dotted lines are given in
Table 4-1.

Figure 4-5. Block Diagram: INTERRUPT HANDLER

Table 4-1. RULES And PERMISSIONS That Specify The Use Of The Dotted Lines In
Figure 4-5 By The Various Types Of INTERRUPT HANDLERS

Type of INTERRUPT
HANDLER

Use of dotted lines

D08(0) MUST monitor D00-D07.
MAY or MAY not drive LWORD* and DS1*.



MAY or MAY not monitor D08-D31.
D16 MUST drive DS1*.

MUST monitor D00-D15.
MAY or MAY not drive LWORD*.
MAY or MAY not monitor D16-D31.

D32 MUST drive DS1* and LWORD*.
MUST monitor D00-D31.

ALL MUST not drive WRITE* low.

Note: The mnemonics D08(0), D16, and D32 are defined in Table 4-5.

4.3.2 INTERRUPTER

The INTERRUPTER functions as follows:

a. It requests an interrupt from the INTERRUPT HANDLER which monitors its interrupt request
line.
b. IF it receives a falling edge on the interrupt acknowledge daisy-chain input, THEN IF it is
requesting an interrupt and the levels on the three valid address lines correspond to the
interrupt request line it is using, and the width of the requested STATUS/ID is either equal to,
or greater than the size it can supply,
THEN it supplies a STATUS/ID,
ELSE it passes the falling edge down the interrupt acknowledge daisychain.

Each INTERRUPTER module drives only one interrupt request line. The VMEbus specification
describes a board that generates interrupt requests on several interrupt lines as having several
INTERRUPTER modules.

PERMISSION 4.1:
Since the INTERRUPTER is just a conceptual model, logic on a VMEbus board MAY be
shared between several INTERRUPTER modules.

The INTERRUPTER uses one of seven lines to request an interrupt. It then monitors the
lowest three lines of the address bus (A01-A03), the IACKIN*/IACKOUT* daisychain, and
optionally IACK*, to determine when its interrupt is being acknowledged. When acknowledged,
it places its STATUS/ID on the data bus and signals the INTERRUPT HANDLER that the
STATUS/ID is valid by driving DTACK* low.

There are five primary differences in the use of the DTB by the INTERRUPTER and the
SLAVE. The INTERRUPTER:

a. only responds when its IACKIN* is low.
b. does not have to monitor the address modifier lines.
c. only monitors the lowest three address lines.
d. does not monitor the WRITE* Iine.
e. is permitted to respond with data of a different size than that requested.



The SLAVE monitors AS*, and interprets a falling edge on AS* as the signal that a valid bus
cycle is in progress. It then proceeds to decode the appropriate number of address lines (15,
23, or 31), and the address modifier lines, and based on this information it determines whether
it was addressed. However, the SLAVE responds only if IACK* is high.

The INTERRUPTER, on the other hand, interprets the falling edge on its IACKIN* line as a
signal that it can respond to the interrupt acknowledge cycle in progress. It decodes only the
lowest three address lines (A01-A03), ignoring the address modifier lines.

The INTERRUPTER does not need to monitor WRITE*, since it is never written to. SLAVES
need to monitor WRITE* so that they can distinguish read cycles from write cycles.

The INTERRUPTER places a STATUS/ID on the bus, and responds with DTACK*, even if the
LWORD*, DS1*, and DS0* lines call for a STATUS/ID whose width is greater than the
INTERRUPTER is able to provide. For example, the INTERRUPT HANDLER might drive
LWORD* and both data strobes low, indicating that it will read 32-bits of STATUS/ID from D00-
D31, but a D08(0) INTERRUPTER would still respond with its 8-bit STATUS/ID on D00-D07. In
contrast, when a SLAVE cannot provide the requested data width, it either responds with
BERR* or does not respond at all, typically resulting in a bus time-out.

OBSERVATION 4.4:
When an INTERRUPTER places a STATUS/ID on the data bus, any undriven data
lines are read by the INTERRUPT HANDLER as high because of the bus terminators.

For example, if a D16 INTERRUPT HANDLER initiates a double byte interrupt acknowledge
cycle, a D08(0) INTERRUPTER would place an 8-bit STATUS/ID on D00-D07. The upper 8
bits, read by the INTERRUPT HANDLER from D08-D15, are read as ones (high), since they
are not driven by the D08(0) INTERRUPTER.

RULE 4.4:
Before responding to an interrupt acknowledge cycle, the INTERRUPTER:

1. MUST have an interrupt request pending.
2. The level of that request MUST match the level indicated on A01-A03.
3. The width of the requested STATUS/ID MUST be equal to or greater than the size it can
respond with.
4. It MUST have received an incoming falling edge on its IACKIN* daisy-chain
input.
IF any of these four conditions are not met,
THEN the INTERRUPTER MUST NOT respond to the interrupt acknowledge cycle.
IF condition 4 is met, but either 1, 2, or 3 is not
THEN the INTERRUPTER MUST pass the falling edge of IACKIN* to the next INTERRUPTER
module in the daisy-chain.

A block diagram of the INTERRUPTER is shown in Figure 4-6.

Notes:



1. The RULES and PERMISSIONS for driving and monitoring the dotted lines are given in
Table 4-2.
2. This input signal is present on RORA INTERRUPTERS only.

Figure 4-6. Block Diagram. INTERRUPTER

Table 4-2. RULES And PERMISSIONS That Specify The Use Of The Dotted Lines In
Figure 4-6 By The Various Types Of INTERRUPTERS

Type of
INTERRUPTER

Use of dotted lines

D08(O) MUST drive D00-D07.
MUST NOT drive D08-D31 Iow.
has no reason to monitor LWORD* or DS1*.

D16 MUST monitor DS1*.
MUST drive D00-D15.
MUST NOT drive D1 6-D31 Iow.
has no reason to monitor LWORD*.

D32 MUST monitor DS1* and LWORD*.



MUST drive D00-D31.
ALL MAY or MAY not monitor WRITE* and IACK*.

MAY or MAY not drive BERR*.

Note:
The mnemonics D08(0), D16, and D32 are defined in Table 4-5.

4.3.3 IACK DAISY-CHAIN DRIVER

The IACK DAISY-CHAIN DRIVER is another module that interacts with INTERRUPT
HANDLERS and INTERRUPTERS to coordinate the servicing of interrupts. It generates a
falling edge on the interrupt acknowledge daisy-chain each time an INTERRUPT HANDLER
initiates an interrupt acknowledge cycle.

A block diagram of the IACK DAISY-CHAIN DRIVER is given in Figure 4-7.



Figure 4-7. Block Diagram: IACK DAISY-CHAIN DRIVER

4.3.4 Interrupt Request Handling Capabilities

INTERRUPT HANDLERS can be designed to handle interrupt requests received on one to
seven interrupt request lines. Table 4-3 shows how the IH( ) mnemonic is used to describe the
interrupt handling capabilities of INTERRUPT HANDLERS.



Table 4-3. Use Of The IH( ) Mnemonic To Specify Interrupt Request Handling Capabilities

The Following
Mnemonic

When Applied to
an

Means that it

IH(x-y) INTERRUPT
HANDLER

can generate interrupt acknowledge cycles in
response to interrupt requests on lines IRQx*
through IRQy*.

IH(x) INTERRUPT
HANDLER

can generate interrupt acknowledge cycles in
response to interrupt requests on line IRQx*.

4.3.5 Interrupt Request Generation Capabilities

INTERRUPTERS can be designed to generate an interrupt request on any of the seven
interrupt request lines. Table 4-4 shows how the 1( ) mnemonic is used to describe the
interrupt request generation capabilities of INTERRUPTERS.

Table 4-4. Use Of The 1( ) Mnemonic To Specify Interrupt Request

Generation Capabilities

The Following
Mnemonic

When Applied to
an

Means that it

I(x) INTERRUPTER can generate an interrupt request on line
IRQx*.

4.3.6 STATUS/ID Transfer Capabilities

There are three STATUS/ID transfer capabilities D08(0), D16 and D32. Table 4-5 shows how
these mnemonics are used to describe the interrupt handling capabilities of INTERRUPT
HANDLERS and INTERRUPTERS.

Table 4-5. Mnemonics That Specify STATUS/ID Transfer Capabilities

The Following
Mnemonic

When Applied
to an

Means that it

D08(0) INTERRUPTER responds to 8-bit, 1 6-bit, and 32-bit interrupt
acknowledge cycles by providing an 8-bit
STATUS/ID on D00-D07.

INTERRUPT
HANDLER

generates 8-bit interrupt acknowledge cycles in
response to the requests on the interrupt request
line(s) and reads an8-bit STATUS/ID from D00-
D07.

D16 INTERRUPTER responds to 1 6-bit and 32-bit interrupt
acknowledge cycles by providing a 1 6-bit
STATUS/ID on D00-D15

INTERRUPT generates 16-bit interrupt acknowledge cycles in



HANDLER response to the requests on the interrupt request
line(s) and reads a16-bit STATUS/ID from D00-
D15.

D32 INTERRUPTER responds to 32-bit interrupt acknowledge cycles
by providing a 32 bit STATUS/ID on D00-D31 .

INTERRUPT
HANDLER

generates 32-bit interrupt acknowledge cycles in
response to the requests on the interrupt request
line(s) and reads a32-bit STATUS/ID from D00-
D31 .

4.3.7 Interrupt Request Release Capabilities

Many widely used peripheral ICs generate interrupt requests. Unfortunately, there is no
standard method for indicating to these ICs when it is time for them to remove their interrupt
request from the bus. Three methods are used:

a. When the relevant processor senses an interrupt request from a peripheral device, it enters
an interrupt service routine, and READS a status register in the device. The peripheral device
interprets this read cycle on its status register as a signal to remove its interrupt request.
b. When the relevant processor senses an interrupt request from a peripheral device, it enters
an interrupt service routine, and WRITES to a control register in the device. The peripheral
device interprets this write cycle to its control register as a signal to remove its interrupt
request.
c. When the relevant processor senses an interrupt request from a peripheral device, it reads a
STATUS/ID from the device. The peripheral device interprets this read cycle as a signal to
remove its interrupt request.

The VMEbus specification calls INTERRUPTERS that use methods a and b Release On
Register Access (RORA) INTERRUPTERS, and those that use method c Release On
AcKnowledge (ROAK) INTERRUPTERS. Figure 4-8 shows how an ROAK INTERRUPTER
releases its interrupt request line when the INTERRUPT HANDLER reads its STATUS/ID and
how an RORA INTERRUPTER releases its interrupt request upon an access to a control or
status register.

OBSERVATION 4.5:
The SLAVE that provided the access to the lNTERRUPTER’S control or status register is
typically on the same board as the INTERRUPTER, and it generates an on-board signal to the
INTERRUPTER when it has completed the register access.

RULE 4.5:
An RORA INTERRUPTER MUST NOT release its interrupt request line before it detects a
falling edge on DSA* during the register access cycle. It MUST release the interrupt request
line within 2 microseconds after the last data strobe goes high at the end of the register access
cycle.

RULE 4.6:



An ROAK INTERRUPTER MUST NOT release its interrupt request line before it detects a
falling edge on DSA* during the interrupt acknowledge cycle which acknowledges its interrupt,
and it MUST release its interrupt request line within 500 nanoseconds after the last data strobe
goes high at the end of the STATUS/ID read cycle.

RULE 4.7:
Both RORA and ROAK INTERRUPTERS MUST provide a STATUS/ID during the interrupt
acknowledge cycle that was initiated in response to their interrupt request.

RULE 4.8:
After an INTERRUPT HANDLER initiates an interrupt acknowledge cycle and reads the
STATUS/ID from an RORA INTERRUPTER, it MUST ignore the low level on the interrupt
request line for 2 microseconds after its on-board signal REGISTER ACCESSED goes true.

OBSERVATION 4.6:
RULE 4.8 prevents the INTERRUPT HANDLER from misinterpreting the low level on that line
as a new interrupt request.

OBSERVATION 4.7:
The MASTER that accesses the lNTERRUPTER’S control or status register is typically on the
same board as the INTERRUPT HANDLER, and it generates an on-board signal to the
INTERRUPT HANDLER when it has completed the register access.

PERMISSION 4.2:
IF a procedure is established to allow the MASTER to signal the INTERRUPT HANDLER that
an access to the INTERRUPTER’S control or status registers has taken place
THEN the MASTER and INTERRUPT HANDLER MAY reside on different boards.

Table 4-6 shows how the RORA and ROAK mnemonics are used to describe
INTERRUPTERS.



Figure 4-8. Release Of Interrupt Request Lines By ROAK And RORA INTERRUPTERS

Table 4-6. Mnemonics That Specify Interrupt Request Release Capabilities

The
Following
Mnemonic

When Applied
to a

Means that it

RORA INTERRUPTER releases its interrupt request line when some MASTER
accesses an on-board status or control register.

ROAK INTERRUPTER releases its interrupt request line when its STATUS/ID is
read during an interrupt acknowledge cycle.

4.3.8 Interaction Between Priority Interrupt Bus Modules

In the following discussions, several on-board signals are defined to describe the interaction
between the INTERRUPTER and INTERRUPT HANDLER modules and other on-board logic.
These signals are only intended to illustrate the information which is passed to and from the
modules, rather than to define their designs.

PERMISSION 4. 3:
VMEbus boards MAY be designed with on-board signals that differ from those used in the
following discussions.



Figure 4-4 shows how the IACKIN*/IACKOUT* daisy-chain is routed through a typical
configuration of boards on the VMEbus.

The IACK* line runs the full length of the backplane and can be driven by any INTERRUPT
HANDLER that has control of the DTB. The backplane connects IACK* to the IACKIN* pin of
slot 1. The IACK DAISY-CHAIN DRIVER resides in slot 1 and monitors the level of slot 1’s
IACKIN* line.

When an INTERRUPT HANDLER drives IACK* (and slot 1’s IACKIN*) low, and then drives
DSA* low, the IACK DAISY-CHAIN DRIVER generates a falling edge on its IACKOUT* pin.
This pin is connected to the IACKIN* pin of slot 2. A jumper on the board in slot 2 routes the
falling edge on the IACKIN* pin to the IACKOUT* pin, and through the backplane to the
IACKIN* pin of the board in slot 3. The INTERRUPTER in slot 3 does not have a pending
interrupt request, so it passes on the falling edge to its IACKOUT* pin. The INTERRUPTER in
slot 4 then detects the falling edge on its IACKIN* line and responds by placing its STATUS/ID
on the data bus, and then driving DTACK* low.

PERMISSION 4.4:
An INTERRUPTER MAY reside on the system controller board, installed in slot 1, along with
the IACK DAISY-CHAIN DRIVER. Figure 4-9 shows how the two modules would be
connected.

PERMISSION 4.5:
More than one INTERRUPTER MAY reside on a board. Figure 4-10 shows how this might be
done.

OBSERVATION 4.8:
In some cases, board designers might not know whether or not the board they are designing
will be installed in slot 1 , or in some other slot of a VMEbus system.

RECOMMENDATION 4.1:
IF a board includes both an IACK DAISY-CHAIN DRIVER and an INTERRUPTER, and might
or might not be installed in slot 1,
THEN design it as shown in Figure 4-9.

PERMISSION 4.6:
Several boards containing IACK DAISY-CHAIN DRIVERS MAY be installed in a
VMEbus system.



Figure 4-9. An IACK DAISY-CHAIN DRIVER And INTERRUPTER On The Same Board



Figure 4-10. Two INTERRUPTERS On The Same Board

4.4 TYPICAL OPERATION

A typical interrupt sequence can be divided into three phases:
Phase 1: The interrupt request phase.
Phase 2: The interrupt acknowledge phase.
Phase 3: The interrupt servicing phase.

Figure 4-1 1 illustrates the timing relationships between the three phases.

Phase 1 starts when an INTERRUPTER drives an interrupt request line low and ends when
the INTERRUPT HANDLER gains control of the DTB. During phase 2 the INTERRUPT
HANDLER uses the DTB to read the lNTERRUPTER’S STATUS/ID. During phase 3 an
interrupt servicing routine is executed. (This might or might not involve data transfers on the
VMEbus.)



The protocol for the interrupt subsystem describes the module interaction required during
phase 1 and phase 2. Any data transfers which take place during phase 3 will follow the Data
Transfer Bus protocol described in Chapter 2.

Figure 4-11 . The Three Phases Of An Interrupt Sequence

4.4.1 Single Handler Interrupt Operation

In single handler interrupt systems, the seven interrupt request lines are all monitored by a
single INTERRUPT HANDLER. The interrupt request lines are prioritized such that IRQ7* has
the highest priority, and IRQ1* has the lowest priority. When the INTERRUPT HANDLER
detects simultaneous requests on two interrupt request lines, it acknowledges the highest
priority request first.

4.4.2 Distributed Interrupt Operation

Distributed interrupt systems contain from two to seven INTERRUPT HANDLERS. For
purposes of the following discussion, distributed interrupt systems will be considered in two
groups:
a. distributed interrupt systems with seven INTERRUPT HANDLERS,
b. distributed interrupt systems with two to six INTERRUPT HANDLERS.

4.4.2.1 Distributed Interrupt Systems With Seven INTERRUPT HANDLERS

In distributed interrupt systems with seven INTERRUPT HANDLERS, each of the interrupt
request lines is monitored by a separate INTERRUPT HANDLER. Each INTERRUPT
HANDLER gains control of the DTB before it reads the STATUS/ID from INTERRUPTERS
driving its interrupt request line.

OBSERVATION 4.9:



There is no specified relationship between the interrupt request line that an INTERRUPT
HANDLER services and the bus request line used by its on-board REQUESTER. For example,
an INTERRUPT HANDLER that services IRQ7* might have a REQUESTER that uses BR0*,
and an INTERRUPT HANDLER that services IRQ1* might have a REQUESTER that uses
BR3*. It is clear from this that there is no implied interrupt priority between lines serviced by
different INTERRUPT HANDLERS.

Figure 4-12 illustrates a distributed interrupt system where INTERRUPT HANDLER A monitors
IRQ2* and has an on-board REQUESTER which requests the DTB on BR2*. INTERRUPT
HANDLER B monitors IRQ5* and has an on-board REQUESTER which requests the DTB on
BR3*. Two INTERRUPTERS simultaneously drive IRQ2* and IRQ5* low, and the two
INTERRUPT HANDLERS cause their on-board REQUESTERS to drive BR2* and BR3* low
simultaneously. In this example, priority arbitration is used and, since both bus requests go low
together, the ARBITER first grants control of the DTB to INTERRUPT HANDLER B’s
REQUESTER, and INTERRUPT HANDLER A waits until B has finished using the DTB.

OBSERVATION 4.10:
If round-robin arbitration is used, either of the INTERRUPT HANDLERS described in Figure 4-
1 2 might be granted the bus first.



Figure 4-12. Two INTERRUPT HANDLERS, Each Monitoring One Interrupt Request Line

4.4.2.2 Distributed Interrupt Systems With Two To Six INTERRUPT HANDLERS

It is also possible to configure a distributed interrupt system in which two or more of the
interrupt request lines are monitored by a single INTERRUPT HANDLER. Figure 4-13
illustrates a system configured with two INTERRUPT HANDLERS in which INTERRUPT
HANDLER A monitors IRQ1*-IRQ4*, and INTERRUPT HANDLER B monitors IRQ5*-IRQ7*. In
this case, the IRQ1*-IRQ4* lines are prioritized; IRQ4* = highest priority for INTERRUPT
HANDLER A, and the IRQ5*-IRQ7* lines are prioritized; IRQ7* = highest priority for
INTERRUPT HANDLER B. The DTB arbitration still determines which INTERRUPT HANDLER
is granted the use of the DTB first.



Figure 4-13. Two INTERRUPT HANDLERS, Each Monitoring Several Interrupt Request
Lines

4.4.3 Example: Typical Single Handler Interrupt System Operation

Figure 4-14 illustrates the operation of a single handler interrupt system in which one
INTERRUPT HANDLER monitors and prioritizes all seven interrupt lines. At the top of the
diagram, a MASTER is using the DTB to move data within the system at a bus request level of
2. An INTERRUPTER in slot 3 requests an interrupt by driving IRQ4* low. When the
INTERRUPT HANDLER detects the low level on IRQ4* it sends a signal to its on-board
REQUESTER, indicating that it needs the bus. This REQUESTER then drives BR3* low. Upon
detecting the bus request, the ARBITER drives BCLR* low, indicating that a higher priority
REQUESTER is waiting for the DTB. (This example assumes a PRl ARBlTER). When
MASTER A detects the low level on BCLR*, it stops moving data and allows its requester to
relinquish control of the DTB, and release BBSY*.

OBSERVATION 4.1 1:



The active MASTER is not required to relinquish the DTB within any specified time, but a
prompt response to the BCLR* line allows the interrupt to be serviced quicker.

When the ARBITER detects BBSY* high, it grants the DTB to REQUESTER B, which informs
its INTERRUPT HANDLER that the DTB is available (see Figures 2-26 and 227). The
INTERRUPT HANDLER then puts out a 3-bit code on the lower three address lines, indicating
that it is acknowledging the interrupt request on the IRQ4* line (see Table 4-7). At the same
time, it drives IACK* low, indicating that it is acknowledging an interrupt, and drives AS* low.
The low level on IACK* is connected, by a signal trace in the backplane, to the IACKIN* pin of
slot 1 and causes the IACK DAISY-CHAIN DRIVER to generate a falling edge down the
IACKIN*/IACKOUT* daisy-chain.

When the INTERRUPTER detects a falling edge on its incoming daisy-chain line (IACKIN*) it
checks the lower three address bits to see if they match the interrupt request line which it is
driving low. Since the 3-bit code matches the line on which it is making its interrupt request,
when the INTERRUPTER detects the data strobe(s) low, it places its STATUS/ID on the data
bus and drives the DTACK* line low. When the INTERRUPT HANDLER detects the low
DTACK*, it reads the STATUS/ID and activates the appropriate interrupt service routine.



Figure 4-14. Typical Single Handler Interrupt System Operation
Flow Diagram (Sheet 1 Of 2)



Figure 4-14b. Typical Single Handler Interrupt System Operation
Flow Diagram (Sheet 2 Of 2)

Table 4-7. 3-Bit Interrupt Acknowledge Code

Interrupt line being
acknowledged

Use of the address bus to
broadcast the 3-bit interrupt

acknowledge code
A03 A02 A01

IRQ1* L L H
IRQ2* L H L
IRQ3* L H H



IRQ4* H L L
IRQ5* H L H
IRQ6* H H L
IRQ7* H H H

H = High level
L = Low level

4.4.4 Example: Prioritization Of Two Interrupts In A Distributed Interrupt System

Figure 4-1 5 illustrates the operation of a distributed interrupt system with two INTERRUPT
HANDLERS. INTERRUPT HANDLER A monitors IRQ1*-IRQ4*, while INTERRUPT HANDLER
B monitors IRQ5*-IRQ7*. INTERRUPT HANDLER A treats IRQ4* as its highest priority
interrupt, while INTERRUPT HANDLER B treats IRQ7* as its highest priority interrupt. At the
top of the diagram, INTERRUPTER C drives IRQ3* low, and INTERRUPTER D drives IRQ6*
low. Both INTERRUPT HANDLERS detect their respective interrupt request lines low, and
both simultaneously indicate to their on-board REQUESTER that they need the DTB. Both the
REQUESTERS drive BR3* Iow. Upon detecting BR3* low, the DTB ARBITER drives BG3IN*
low on slot 1. This low signal is passed down the BG3IN*/BG30UT* daisy-chain until it is
detected by the REQUESTER B in slot 4. This REQUESTER then signals its on-board
INTERRUPT HANDLER B that the DTB is available. INTERRUPT HANDLER B then reads the
STATUS/ID from INTERRUPTER D.



Figure 4-15. Typical Distributed interrupt System With Two INTERRUPT HANDLERS,
Flow Diagram

4.5 PRIORITY INTERRUPT BUS TIMING RULES AND OBSERVATIONS

This section describes the timing RULES and OBSERVATI0NS that govern the behavior of
INTERRUPT HANDLERS, INTERRUPTERS, and IACK DAISY-CHAIN DRIVERS during the
selection of the responding INTERRUPTER (i.e. the INTERRUPTER that is to provide its
STATUS/ID in response to the interrupt acknowledge cycle). This timing information is in the
form of Figures and Tables.



The interrupt acknowledge cycle begins with the selection of the responding INTERRUPTER.
This is called the INTERRUPTER selection portion of the cycle. Once an INTERRUPTER
responds, the INTERRUPT HANDLER reads the STATUS/ID from it. This is called the
STATUS/ID transfer portion of the cycle.

When the INTERRUPT HANDLER initiates an interrupt acknowledge cycle, there might be
INTERRUPTERS between it and the INTERRUPTER being acknowledged that either:

a. do not have an interrupt pending,
b. have an interrupt pending, or on a different interrupt request line than the one being
acknowledged.

Although these INTERRUPTERS do not respond with a STATUS/ID, they do participate in the
interrupt acknowledge cycle by passing the falling edge from their IACKIN* line on to their
IACKOUT* Iine. For this reason, these INTERRUPTERS are called participating
INTERRUPTERS.

The first INTERRUPTER in the daisy-chain that has an interrupt pending on the interrupt
request line being acknowledged responds with a STATUS/ID. For this reason it is called the
responding INTERRUPTER. All other INTERRUPTERS are called non-participating
INTERRUPTERS.

Table 4-8 lists timing Tables and timing diagrams that specify INTERRUPT HANDLER and
INTERRUPTER operation.

Table 4-9 lists timing Tables and timing diagrams that specify IACK DAISY-CHAIN DRIVER
operation.

Table 4-10 lists timing Tables and timing diagrams that specify participating INTERRUPTER
operation.

Table 4-11 lists timing Tables and timing diagrams that specify responding INTERRUPTER
operation.

Table 4.12 defines the mnemonics that are used in Tables 4-13 through 4-15.

Tables 4-1 through 4-15 specify the use of bus signal lines by the Priority Interrupt Bus
functional modules.

Tables 4-16 through 4-19 specify the timing parameters for the Priority Interrupt Bus functional
modules. (The reference numbers used in Tables 4-17 through 4-19 correspond to the timing
parameter numbers in Table 4-1 6.)

Figures 4-16 through 4-23 are timing diagrams that specify the timing during interrupt
acknowledge cycles.



Figure 4-24 specifies additional inter-cycle timing for the IACKIN*/IACKOUT daisychain .

All of the RULES and OBSERVATI0NS associated with the Figures listed below also apply to
INTERRUPT HANDLERS, INTERRUPTERS, and IACK DAISY-CHAIN DRIVERS.

Figures 2-22 through 2.24 in Chapter 2 specify the timing for the address and data strobes
between data transfer cycles.

Figure 2-25 specifies the timing of a timed-out cycle.

Figures 2-26 and 2-27 specify the timing during mastership transfer.

In order to meet; the specified timing, board designers have to take into account the worst
case propagation delays of the bus drivers and receivers used on their VMEbus boards. The
propagation delay of the drivers depends on their output loads. However, manufacturers
specifications do not always give enough information to calculate the propagation delays under
various loads. To help the VMEbus board designer, some suggestions are offered in Chapter
6.

The OBSERVATIONS specify the timing of incoming lines signal transitions. These times can
be relied upon as long as the backplane loading RULES in Chapter 6 are not violated. The
RULES for the bus terminators in Chapter 6 guarantee that the timing parameters for signal
lines that are released after they have been driven, are met

Typically, for each timing RULE there is a corresponding timing OBSERVATI0N. However, the
time that is guaranteed in the OBSERVATIONS might differ from the time specified by the
RULE. For example, a careful inspection of the timing diagrams shows that the INTERRUPT
HANDLER is required to provide 35 nanoseconds of address set-up time, but the
INTERRUPTER is only guaranteed 1 0 nanoseconds. This is because the address drivers are
not always able to drive the backplane’s signal lines completely through the low to high
threshold region, until the transition propagates to the end of the backplane and is reflected
back. The falling edge of the address strobe, however, typically crosses the 0.8-volt threshold
without waiting for a reflection. Therefore, the resulting set-up time at the INTERRUPTER is
the INTERRUPT HANDLER’S set-up time less two bus propagation times.

A special notation has been used to describe the data strobe timing. The two data strobes
(DS0* and DS1*) do not always make their transitions simultaneously. For purposes of these
timing diagrams, DSA* represents the first data strobe to make its

transition (whether that is DS0* or DS1*). DSB* represents the second data strobe to make its
transition (whether that is DS1* or DS0*). The broken line shown while the data strobes are
stable indicates that the first data strobe to make a falling transition might not be the first to
make its rising transition -- i.e., DSA* might represent DS0* on its falling edge and DS1* on its
rising edge.

Table 4-8. Timing Diagrams That Define INTERRUPT HANDLER And INTERRUPTER
Operation



Mnemonic Type of cycle INTERRUPTER
Selection Timing

Diag Figures

STATUS/ID
Transfer

Timing Diag
Figure

D08(0) SINGLE BYTE STATUS/ID READ 2-12 & 4-16 4-20
D16 DOUBLE BYTE STATUS/ID READ 2-12 & 4-16 4-21
D32 QUAD BYTE STATUS/ID READ 2-12 & 4-16 4-21

Note:
See Tables 4-16 and 4-17 for timing parameters

Table 4-9. Timing Diagrams That Define IACK DAISY-CHAIN DRIVER Operation

Type of cycle INTERRUPTER
Selection Timing

Diag
SINGLE BYTE STATUS/ID READ Figure 4-17
DOUBLE BYTE STATUS/ID READ Figure 4-17

QUAD BYTE STATUS/ID READ Figure 4-17

Note:
See Tables 4-16 and 4-19 for timing values

Table 4-10. Timing Diagrams That Define Participating INTERRUPTER Operation

Type of cycle INTERRUPTER
Selection Timing

Diag
SINGLE BYTE STATUS/ID READ Figure 4-18
DOUBLE BYTE STATUS/ID READ Figure 4-18

QUAD BYTE STATUS/ID READ Figure 4-18

Note:
See Tables 4-16 and 4-18 for timing values

Table 4-11 . Timing Diagrams That Define Responding INTERRUPTER Operation

Mnemonic Type of cycle INTERRUPTER
Selection Timing

Diag Figures

STATUS/ID
Transfer

Timing Diag
Figure

D08(0) SINGLE BYTE STATUS/ID READ 4-19 4-22
D16 DOUBLE BYTE STATUS/ID READ 4-19 4-23
D32 QUAD BYTE STATUS/ID READ 4-19 4-23

Note:



See Tables 4-16 and 4-18 for timing parameters

Table 4-12. Definitions Of Mnemonics Used In Tables 4-13, 4-14, And 4-15

Mnemonic Description Comments
DVBIH DRIVEN VALID BY

INTERRUPT HANDLER
RULE 4.9:
INTERRUPT HANDLER MUST drive
DVBIH lines to a valid level.

DLBIH DRIVEN LOW BY
INTERRUPT HANDLER

RULE 4.10:
INTERRUPT HANDLER MUST drive
DLBIH lines to a low level

DHBIH DRIVEN HIGH BY
INTERRUPT HANDLER

RULE 4.11:
INTERRUPT HANDLER MUST drive
DHBIH lines to a high level

dhbih? DRIVEN HIGH BY
INTERRUPT
HANDLER?

PERMISSION 4 7:
INTERRUPT HANDLER MAY drive
dhbih? lines high.
RULE 4.12:
INTERRUPT HANDLER MUST NOT
drive dhbih? lines low during the cycle.

dxbih? DRIVEN BY
INTERRUPT
HANDLER?

PERMISSION 4.8:
INTERRUPT HANDLER MAY drive
dxbih? lines during the cycle, or it MAY
leave dxbih? lines undriven (When the
line is driven it carries no valid
information.)

DVBI DRIVEN VALID BY
INTERRUPTER

RULE 4.13:
INTERRUPTER MUST drive DVBI
lines to a valid level.

dhbi? DRIVEN BY
INTERRUPTER?

PERMISSION 4.9:
INTERRUPTER MAY drive dhbi? lines
high.
RULE 4.14:
INTERRUPTER MUST NOT drive
dhbi? lines low.

dxbi? DRIVEN BY
INTERRUPTER?

PERMISSION 4.10:
INTERRUPTER MAY drive dxbi? lines
during the cycle, or it MAY leave the
line undriven. (When the line is driven,
it carries no valid information.)

Table 4-13. Use Of Addressing Lines During Interrupt Acknowledge Cycles

Interrupt Line Being
Acknowledged

A03 A02 A01 IACK*

IRQ1* DLBIH DLBIH DHBIH DLBIH
IRQ2* DLBIH DHBIH DLBIH DLBIH



IRQ3* DLBIH DHBIH DHBIH DLBIH
IRQ4* DHBIH DLBIH DLBIH DLBIH
IRQ5* DHBIH DLBIH DHBIH DLBIH
IRQ6* DHBIH DHBIH DLBIH DLBIH
IRQ7* DHBIH DHBIH DHBIH DLBIH

Table 4-14. Use Of The DS1 *, DS0*, LWORD*, And WRITE* Lines During Interrupt
Acknowledge Cycles

Mnemonic Type of cycles DS1* DS0* LWORD* WRITE*
D08(0) Single byte interrupt

acknowledge
dhbih? DLBIH dhbih? dhbih?

D16 Double byte interrupt
acknowledge

DLBIH DLBIH dhbih? dhbih?

D32 Quad byte interrupt
acknowledge

DLBIH DLBIH DLBIH dhbih?

Table 4-15. Use Of The Data Bus Lines To Transfer The STATUS/ID

Mnemonic Type of cycIes D24-
D31

D16-
D23

D08-
D15

D00-
D07

D08(0) Single, double, and quad byte
interrupt acknowledge

dhbi? dhbi? dhbi? DVBI

D16 Double and quad byte interrupt
acknowledge

dhbi? dhbi? DVBI DVBI

D32 Quad byte interrupt
acknowledge

DVBI DVBI DVBI DVBI

Table 4-16: INTERRUPT HANDLER, INTERRUPTER, And IACK DAISY-CHAIN DRIVER
Timing Parameters

PARAMETER INTERRUPT
HANDLER

See Table 4-17

INTERRUPTER
See Table 4-18

IACK DAISY CHAIN
DRIVER

See Table 4-19
MIN MAX MIN MAX MIN MAX

1 0
2 0
3 60
4 35 10
5 40 30 30
6 0
7 0
9 0 0

10 0
11 40 30
12 35 10



13 10 20
14 0 0
16 0 0
18 0 0
19 40 30 30
20 0 0
21 0 0
23 10 0

24A 0
24B 0
25 25
26 0 0
27 -25 0
28 30 2T 30
29 0 0
30 0 0
31 0 0
32 10 10
34 40 40
35 30 30
36 0
37 0

38A
38B 0
39 40
40 30 30
41 0
42 30
43 30

NOTES:
1. All times are in nanoseconds.
2. T = the time-out value.

Table 4-17: INTERRUPT HANDLER, Timing RULES And OBSERVATIONS

Note: The numbers correspond to the timing parameters specified in Table 4-16.

1. RULE 4.15:
When taking control of the VMEbus, the INTERRUPT HANDLER MUST NOT
drive any of IACK*, A01-A03, LWORD*, WRITE*, DS0*, DS1* or AS* until after the
previous MASTER or INTERRUPT HANDLER allows AS* to rise above the low
level.
OBSERVATION 4.12:
Chapter 3 describes how an INTERRUPT HANDLER’S REQUESTER is granted



use of the VMEbus.
2. RULE 4.16:

When taking control of the VMEbus, the INTERRUPT HANDLER MUST NOT
drive any of IACK*, A01-A03, LWORD*, WRITE*, DS0*, DS1*, or AS* until after it
receives DEVICE GRANTED BUS true.
OBSERVATION 4.13:
Chapter 3 describes how an INTERRUPT HANDLER’S REQUESTER is granted
use of the VMEbus.

3. RULE 4.1 7:
When taking control of the VMEbus, the INTERRUPT HANDLER MUST NOT
drive AS* low until this time after the previous MASTER or INTERRUPT
HANDLER allows AS* to rise above the low level.
OBSERVATION 4.1 4:
RULE 4.17 ensures that timing parameter 5 for INTERRUPTERS and SLAVES is
guaranteed when there is an interchange of the DTB mastership.

4. RULE 4.18:
The INTERRUPT HANDLER MUST NOT drive AS* low until IACK* has been low,
and LWORD* and A01 -A03 have been valid for this minimum time.

5. RULE 4.19:
When using the DTB for two consecutive cycles, the INTERRUPT HANDLER
MUST drive AS* low until it has been high for this minimum time.

9. RULE 4.20:
The INTERRUPT HANDLER MUST NOT drive DSA* low until both DTACK* and
BERR* are high.

10. RULE 4.21:
The INTERRUPT HANDLER MUST NOT drive DSA* low before it has driven AS*
low.

11. RULE 4.22:
The INTERRUPT HANDLER MUST NOT drive DSA* low until DS0* and DS1*
have been simultaneously high for this minimum time.

12. RULE 4.23:
The INTERRUPT HANDLER MUST NOT drive DSA* low until WRITE* has been
high for this minimum time.

13. RULE 4.24:
During double byte or quad byte STATUS/ID read cycles, the INTERRUPT
HANDLER MUST drive DSB* low within this maximum time after it drives DSA*
low.
OBSERVATION 4.15:
Timing parameter 1 3 does not apply to single byte STATUS/ID reads.

14. RULE 4.25:
During all interrupt acknowledge cycles, the INTERRUPT HANDLER MUST hold
the 3 bit interrupt acknowledge code valid, and maintain the appropriate level on
LWORD* until it detects a falling edge on DTACK* or BERR*.

16. RULE 4.26:
During all interrupt acknowledge cycles, the INTERRUPT HANDLER MUST
maintain IACK* low until it detects a falling edge on DTACK* or BERR*.

18. RULE 4.27:



The INTERRUPT HANDLER MUST hold AS* low until it detects DTACK* or
BERR* Iow.

19. RULE 4.28:
The INTERRUPT HANDLER MUST hold AS* low for this minimum time.

20. RULE 4.29:
Once an INTERRUPT HANDLER has driven DSA* low, it MUST maintain it low
until it detects DTACK* or BERR* low.

21. RULE 4.30:
Once an INTERRUPT HANDLER has driven DSB* low, it MUST maintain it low
until it detects DTACK* or BERR* low.

23. RULE 4.31:
Once an INTERRUPT HANDLER has driven DSA* low, it MUST maintain a high
on the WRITE* line until this minimum time after both data strobes are high.

24A. RULE 4.32:
IF the INTERRUPT HANDLER drives or releases AS* to high after its
REQUESTER releases BBSY*,
THEN it MUST release IACK*, A01-A03, LWORD*, WRITE*, DS0*, and DS1*
before allowing AS* to rise above the low level.

24B. RULE 4.33:
IF the INTERRUPT HANDLER drives or releases AS* to high before its
REQUESTER releases BBSY*,
THEN it MUST release IACK*, A01-A03, LWORD*, WRITE*, DS0*, and DS1*
before changing its DEVICE WANTS BUS signal from true to false.

25. RULE 4.34:
IF the INTERRUPT HANDLER drives or releases AS* to high after its
REQUESTER releases BBSY*,
THEN it MUST release AS* within this time after allowing it to rise above the low
level.

26. OBSERVATION 4.16:
Timing parameter 26 guarantees that the data bus will not be driven until the
INTERRUPT HANDLER drives DSA* low.

27. OBSERVATION 4.17:
The INTERRUPT HANDLER is guaranteed that the data bus will be valid within
this time after DTACK* goes low. This time does not apply to cycles where the
INTERRUPTER drives BERR* low instead of DTACK*.

28. OBSERVATION 4.18:
The INTERRUPT HANDLER is guaranteed that neither DTACK* nor BERR* will
go low until this minimum time after it drives DSA* low. The BUS TIMER
guarantees the INTERRUPT HANDLER that if DTACK* has not gone low after its
time-out period has elapsed, and within twice its time-out period, then the BUS
TIMER will drive BERR* low.

29. OBSERVATION 4.19:
The INTERRUPT HANDLER is guaranteed that the data bus remains valid until it
drives DSA* high.

30. OBSERVATION 4.20:
This guarantees that neither DTACK* nor BERR* goes high until the INTERRUPT
HANDLER drives both DS0* and DS1* high.



31. OBSERVATION 4.21:
The INTERRUPT HANDLER is guaranteed that the data bus has been released
by the time DTACK* and BERR* are high.

Table 4-18. INTERRUPTER, Timing RULES And OBSERVATIONS

Note: The numbers correspond to the timing parameters specified in Table 4-16.

4. OBSERVATION 4.22:
INTERRUPTERS are guaranteed that IACK*, LWORD*, and A01-A03 have been
valid for this minimum time when they detect a falling edge on AS*.

5. OBSERVATION 4.23:
All INTERRUPTERS are guaranteed this minimum high time on AS* between DTB
cycles.

6. OBSERVATION 4.24:
The responding INTERRUPTER is guaranteed that none of D00-D31 will be driven
by any other module until the responding INTERRUPTER releases DTACK* and
BERR* to high.

7. OBSERVATION 4.25:
The responding INTERRUPTER is guaranteed that the data bus will be released by
all other modules by the time DSA* goes low.

9. OBSERVATION 4.26:
The responding INTERRUPTER is guaranteed that neither DS0* nor DS1* will go
low until DTACK* and BERR* from the the previous cycle have gone high.

11. OBSERVATION 4.27:
INTERRUPTERS are guaranteed this minimum time during which both data
strobes are simultaneously high between cycles.

12. OBSERVATION 4.28:
INTERRUPTERS are guaranteed that WRITE* has been high for this minimum
time when they detect a falling edge on DSA*.

13. OBSERVATION 4.29:
IF both data strobes are going to be driven low,
THEN the responding INTERRUPTER is guaranteed that DSB* will go low within
this maximum time after DSA*.
And therefore:
IF the DSB* does not go low within this maximum time,
THEN the responding INTERRUPTER assumes that it is to respond with a single
byte STATUS/ID.

14. OBSERVATION 4.30:
The responding INTERRUPTER is guaranteed that LWORD* and A01-A03 will
remain valid until it drives DTACK* or BERR* low, provided it does so within the
bus time-out period.

16. OBSERVATION 4.31:
The responding INTERRUPTER is guaranteed that IACK* will remain low until it
drives DTACK* or BERR* low, provided it does so within the bus time-out period.

18. OBSERVATION 4.32:
The responding INTERRUPTER is guaranteed that AS* will remain low until it



drives DTACK* or BERR* low, provided that it does so within the bus time-out
period.

19. OBSERVATION 4.33:
INTERRUPTERS are guaranteed that the AS* will remain low for this minimum
time.

20. OBSERVATION 4.34:
The responding INTERRUPTER is guaranteed that once DSA* goes low, it will
remain low until the INTERRUPTER has driven DTACK* or BERR* low, provided
that the INTERRUPTER does so within the bus time-out period.

21. OBSERVATION 4.35:
The responding INTERRUPTER is guaranteed that once DSB* goes low, it will
remain low until the INTERRUPTER has driven DTACK* or BERR* low, provided
that the INTERRUPTER does so within the bus time-out period.

23. OBSERVATION 4.36:
INTERRUPTERS are guaranteed that the WRITE. line remains high until both data
strobes are high.

26. RULE 4.35:
The INTERRUPTER MUST NOT drive the data bus until DSA* goes low

27. RULE 4.36:
The responding INTERRUPTER MUST NOT drive DTACK* low before it drives the
data lines with a valid STATUS/ID.
OBSERVATION 4.37:
This time does not apply to cycles where the INTERRUPTER drives BERR* low

28. RULE 4.37:
The responding INTERRUPTER MUST wait this minimum time after DSA* goes
low before driving DTACK* or BERR* low.

29. RULE 4.38:
Once the responding INTERRUPTER has driven DTACK* low, it MUST NOT
change D00-D31 until DSA* goes high.

30. RULE 4.39:
Once the responding INTERRUPTER has driven DTACK* or BERR* to low, it
MUST NOT release it until it detects both DS0* and DS1* high.

31. RULE 4.40:
The responding INTERRUPTER MUST release all of D00-D31 before releasing
DTACK* and BERR* to high.

32. OBSERVATION 4.38:
The responding INTERRUPTER is guaranteed that IACK*, LWORD*, and A01-A03
have been valid for this minimum time when it detects a falling edge on DSA*. This
time is derived from timing parameters 4, and 10.

34. OBSERVATION 4.39:
The INTERRUPTER is guaranteed that AS* has been low for this minimum time,
when it detects a falling edge on IACKIN*.

35. RULE 4.41:
A participating INTERRUPTER MUST drive its IACKOUT* high within this
maximum time after the rising edge on AS*.

36. RULE 4.42:
The INTERRUPTER MUST NOT drive the data bus until its IACKIN* line goes low.



37. RULE 4.43:
IF a participating INTERRUPTER drives the data bus,
THEN it MUST release it before driving its IACKOUT* line low.

38A
.

RULE 4.44:
A participating INTERRUPTER MUST NOT drive its IACKOUT* line low, until it
detects its IACKIN* line low.

38B
.

RULE 4.45:
The responding INTERRUPTER MUST NOT drive its DTACK* line low, until it
detects its IACKIN* line low.

39. OBSERVATION 4.40:
This time guarantees that each lNTERRUPTER’S IACKIN* line will go high within
this time after the rising edge on AS*. This time is derived from timing parameter
35, where the IACK DAISY-CHAIN DRIVER and participating INTERRUPTERS are
required to drive their IACKOUT* line high within a maximum time.

40. OBSERVATION 4.41:
All INTERRUPTERS are guaranteed that their IACKIN* line will stay high for this
minimum time between consecutive DTB cycles.

41. OBSERVATION 4.42:
This time guarantees that A01-A03 and LWORD* remain valid until this time after
the participating INTERRUPTER drives its IACKOUT* low, provided it does so
within the bus time-out period.

43. OBSERVATION 4. 43:
This time guarantees that AS* remains low for this minimum time after the
participating INTERRUPTER drives its IACKOUT* low, provided it does so within
the bus time-out period.

Table 4-19. IACK DAISY-CHAIN DRIVER, Timing RULES And OBSERVATI0NS

Note:
The numbers correspond to the timing parameters specified in Table 4-16.

OBSERVATION 4.44:
Since the backplane connects IACK* to the slot 1 IACKIN*, these two signals are equivalent.
And therefore, all RULES and OBSERVATIONS that apply to one, are applicable to the other
as well.

5. OBSERVATION 4.45:
The IACK DAISY-CHAIN DRIVER is guaranteed this minimum high time on AS*
between DTB cycles.

19. OBSERVATION 4.46:
The IACK DAISY-CHAIN DRIVER is guaranteed that the AS* will remain low for
this minimum time. This time is derived from timing parameters 8, 1 6, and 27 of
the INTERRUPTER.

32. OBSERVATION 4.47:
The IACK DAISY-CHAIN DRIVER is guaranteed that IACK* (and the slot 1
IACKIN*) has been valid for this minimum time when it detects a falling edge on
DSA* .



34. RULE 4.46:
IF the IACKIN* line is low when the IACK DAISY-CHAIN DRIVER detects a
falling edge on DSA*,
THEN it MUST drive its IACKOUT* line low, but it MUST NOT do so until this
time after the falling edge on DSA*.
OBSERVATION 4.48:
The IACK DAISY-CHAIN DRIVER does not drive its IACKOUT* line low every
time DSA* goes low. It only does so when the IACK* line is low as well,
indicating that an interrupt acknowledge cycle is in progress.

35. RULE 4.47:
IF the IACK DAISY-CHAIN DRIVER drives its IACKOUT* line low
THEN it MUST drive its IACKOUT* high within this time after the rising edge of
AS*.

40. RULE 4.48:
The IACK DAISY-CHAIN DRIVER MUST NOT drive IACKOUT* low until it has
been high for this minimum time.

42. OBSERVATION 4.49:
IF the IACK DAISY-CHAIN DRIVER drives its IACKOUT* line low within the bus
time-out period, THEN this time guarantees that IACK* (and the slot 1 IACKIN*)
remains valid for this time.



Figure 4-16. INTERRUPT HANDLER And INTERRUPTER
INTERRUPTER Selection Timing

SINGLE, DOUBLE And QUAD BYTE INTERRUPT ACKNOWLEDGE CYCLE



Figure 4-17. IACK DAISY-CHAIN DRIVER
INTERRUPTER Selection Timing

SINGLE, DOUBLE, And QUAD BYTE INTERRUPT ACKNOWLEDGE CYCLE



Figure 4-18. Participating INTERRUPTER
INTERRUPTER Selection Timing

SINGLE, DOUBLE, And QUAD BYTE INTERRUPT ACKNOWLEDGE CYCLE



Figure 4-19: Responding INTERRUPTER
INTERRUPTER Selection Timing

SINGLE, DOUBLE, And QUAD BYTE INTERRUPT ACKNOWLEDGE CYCLE



Figure 4-20: INTERRUPT HANDLER
STATUS/ID Transfer Timing

SINGLE BYTE INTERRUPT ACKNOWLEDGE CYCLE

Figure 4-21: INTERRUPT HANDLER



STATUS/ID Transfer Timing
DOUBLE BYTE INTERRUPT ACKNOWLEDGE CYCLE

QUAD BYTE INTERRUPT ACKNOWLEDGE CYCLE

Figure 4-22: Responding INTERRUPTER
STATUS/ID Transfer Timing

SINGLE BYTE INTERRUPT ACKNOWLEDGE CYCLE



Figure 4-23. Responding INTERRUPTER
STATUS/ID Transfer Timing

DOUBLE BYTE INTERRUPT ACKNOWLEDGE CYCLE
QUAD BYTE INTERRUPT ACKNOWLEDGE CYCLE

Figure 4-24. ACK DAISY-CHAIN DRIVER, Responding INTERRUPTER,
And Participating INTERRUPTER

IACK Daisy-Chain Inter-Cycle Timing



CHAPTER 5

UTILITY BUS

5.1 INTRODUCTION

This Chapter identifies and defines the signal lines and modules which provide utility functions
for the VMEbus. The Utility Bus supplies periodic timing, initialization and diagnostic capability
for the VMEbus (See Figure 5-1 ).

Figure 5-1. Utility Bus Block Diagram

5.2 UTILITY BUS SIGNAL LINES

The Utility Bus signal lines are listed below:

System Clock (SYSCLK)
Serial Clock (SERCLK)
Serial Data (SERDAT*)
AC Fail (ACFAIL*)
System Reset (SYSRESET*)
System Failure (SYSFAIL*)

5.3 UTILITY BUS MODULES

5.3.1 The SYSTEM CLOCK DRIVER

The system clock is an independent, non-gated, fixed frequency, 16 MHz, 50 percent
(nominal) duty cycle signal. The SYSCLK driver is located on the system controller are located



in board slot one (see Chapter 1). It provides a known time base that is useful for counting off
time delays. Figure 5-2 shows the SYSTEM CLOCK DRIVER timing diagram.

OBSERVATION 5.1:
SYSCLK has no fixed phase relationships with other VMEbus timing.

5.3.2 The SERIAL CLOCK DRIVER

The SERIAL CLOCK DRIVER provides a fixed frequency, special waveform signal used by
VMSbus modules that reside on VMEbus boards. Its waveform is specified in the VMSbus
specification. For the convenience of designers, the timing parameters in effect at the time that
this document has been published are provided in Appendix C.

Figure 5-2. SYSTEM CLOCK DRIVER Timing Diagram

5.3.3 The POWER MONITOR

Figure 5-3 is the block diagram for the POWER MONITOR module. This module detects power
failures and signals the VMEbus system in time to effect orderly shutdown. When power is
then reapplied to the system the POWER MONITOR ensures that all other VMEbus modules
are initialized.

The POWER MONITOR might also monitor a manually operated push button and initialize the
VMEbus system whenever that button is depressed by the operator.

The ACFAIL* and SYSRESET* transitions, and the point at which the system DC voltages
violate specification, have certain timing relationships. These relationships are shown in
Figures 5-4 and 5-5.

PERMISSION 5.1:
VMEbus systems MAY be built with or without a POWER MONITOR module.



RULE 5.1:
POWER MONITORS MUST comply with the timing given in Figures 5-4 and 5-5.

PERMISSION 5.2:
The SYSRESET* line MAY be driven low by any VMEbus board to initialize the system from a
manual push-button. Where a board drives SYSRESET*, but does not drive ACFAIL*, the
timing in Figure 5-4 and Figure 5-5 does not apply.

RULE 5.2:
Whenever any board drives SYSRESET* low, it MUST hold SYSRESET* low for a minimum
period of 200 milliseconds.



Figure 5-3. Block Diagram Of POWER MONITOR Module

5.4 SYSTEM INITIALIZATION AND DIAGNOSTICS

The VMEbus provides protocols which allow the system to be shut down and powered up in an
orderly manner. Two signal lines are used in the power-down and power-up sequence:
ACFAIL* and SYSRESET*. Another signal line is used in the power-up sequence: SYSFAIL*.



The following specifies the behavior of VMEbus functional modules during the powerdown
sequence:

RECOMMENDATION 5.1:

Design MASTERS so that they do not request the bus for any purpose except powerfail
activity, after ACFAIL* has been low for 200 microseconds.

Figure 5-4. POWER MONITOR Power Failure Timing

Figure 5-5. POWER MONITOR System Restart Timing

RECOMMENDATION 5.2:
IF MASTERS and INTERRUPT HANDLERS have a bus request pending prior to detecting
ACFAIL* low,
THEN they are to limit their subsequent non-power-fail activity to 200 microseconds.

OBSERVATION 5.2:
Bus accesses required to save and restore system data to VMEbus memory depend upon the
application, and are not specified here. (The operating system has to assure that data saved
during the shut-down process is restored prior to system operation.) In the case of a
multiprocessing system, this might require some processor to processor communication .



System Reset (SYSRESET*) is an open-collector line driven by a POWER MONITOR module,
or by any board in response to a push-button switch closure.

OBSERVATION 5.3:
Special circuitry is needed where push-button reset switches are used, to ensure that switch
bounce does not cause the board to violate the 200 milliseconds minimum SYSRESET* low
time.

RULE 5.3:
The SYSTEM CLOCK driver MUST continue to provide the specified SYSCLK waveform
regardless of the state of the SYSRESET* Iine.

PERMISSION 5.4:
When SYSRESET* goes low, any board that requires more than 200 milliseconds to complete
its initialization MAY turn on its SYSRESET* driver low to maintain SYSRESET* low for the
required period.

RULE 5.4:
IF +5 Vdc power source is within its specified range when SYSRESET* goes
low ,
THEN functional modules MUST satisfy the timing RULES given in Table 5-1 within the
specified time after SYSRESET* goes low.

RULE 5.5:
IF SYSRESET* is low when the +5 Vdc enters its specified range,
THEN functional modules MUST satisfy the timing RULES given in Table 5-1 and then MUST
refrain from driving specified lines until SYSRESET* goes high.

RULE 5.6:
After satisfying the RULES in Table 5-1, functional modules MUST NOT change the state of
their drivers until SYSRESET* goes high, unless the +5 Vdc power source exits its specified
range.

RULE 5.7:
IF +5 Vdc power source is within the specified range when SYSRESET* goes low and a
MASTER or INTERRUPT HANDLER is driving AS*, DS0*, or DS1* low,
THEN it MUST maintain these strobes low long enough to satisfy the minimum low times given
in Chapters 2 and 4.

Table 5-1. Module Drive During Power-Up And Power-Down Sequences
MODULE MUST REFRAIN FROM DRIVING AFTER

SYSRESET*
HAS BEEN
LOW FOR

MASTERS and INTERRUPT
HANDLERS

AS*, DS0*, or DS1* from high to low 5 usec

MASTERS and INTERRUPT IACK*, LWORD*, AS*, DS0*, DS1*, 20 usec



HANDLERS AM0-AM5, A01-A31, WRITE*, or
D00-D31

SLAVES and
INTERRUPTERS

D00-D31, DTACK*, or BERR 30 usec

INTERRUPTERS IRQ1*-IRQ7* 30 usec
BUS TIMER BERR* 30 usec

ARBITER BG0IN*-BG3IN* from high to low 5 usec
ARBITER BG0IN*-BG3IN* low 30 usec

REQUESTERS BBSY* 30 usec

SYSFAIL* is an open collector line that is held low when the system is powered-up and
remains low until system self-tests are complete (see Figure 5-6). The following applies:

SUGGESTION 5-1:
On intelligent MASTER boards, include a locally accessible control register bit that is initialized
to drive SYSFAIL* low when power is first applied to the board. This permits the board’s local
intelligence to do a local self-test and release SYSFAIL* only if the self-test passes.

SUGGESTION 5-2:
Design non-intelligent boards with a globally accessible control register bit that is initialized to
drive SYSFAIL* low. This allows a MASTER on the VMEbus to run a test on the non-intelligent
board and then write to the global control register bit releasing the board’s SYSFAIL* driver.

SUGGESTION 5-3:
Where a SYSFAIL* control register bit is included on VMEbus boards, provide a status LED on
the board’s front panel to indicate the status of the control register bit. Then, if a system failure
is indicated by the SYSFAIL* signal line, a visual inspection will help determine which board
has failed.

RULE 5.3:
IF SYSFAIL* control register bits are included on VMEbus boards,
THEN they MUST drive SYSFAIL* low within 50 milliseconds after SYSRESET* goes low, as
shown in Figure 5-6.

PERMISSION 5.4:
A VMEbus board MAY also drive SYSFAIL* low at any time during normal operation to
indicate that it has detected some kind of failure.



Figure 5-6. SYSRESET* And SYSFAIL* Timing Diagram

5.5 POWER PINS

Figure 5-7 gives the current rating for the VMEbus power pins at various temperatures.

OBSERVATION 5.4:
Some connector pins have a slightly higher contact resistance than others when plugged into
the backplane. This produces unbalanced current flow in pins which are paralleled. Suppose
that two pins are paralleled and are carrying a total of two amperes of current. If the contact
resistance on one is 1 milliohm and the other is 2 milliohms, then one pin will be carrying only
0.67 amperes while the other carries 1.33 amperes!

RULE 5.9:
VMEbus connector pins MUST be capable of carrying the currents shown by the solid line in
Figure 5-7.

OBSERVATION 5.5:
If one or more power pins fail completely, all of the load current flows through the remaining
pins. For example, if half of the pins fail, the remaining pins carry twice the normal current.
Depending upon the load current, this might cause damage to these remaining good pins.

SUGGESTION 5-4:
When designing a VMEbus board with a high current load, divide the board’s area into zones
which are each powered by a separate power grid. Don’t connect these grids to each other on
the VMEbus board. Instead, connect each to its own VMEbus power pin.

OBSERVATION 5.6:
IF a double height VMEbus board which draws more power than its P1
connector can provide is plugged into a subrack which contains only a J1
backplane,
THEN its P1 power pins will overheat, and might be damaged.



5.6 RESERVED LINE

RULE 5.10:
The VMEbus specification labels one signal line as RESERVED. The RESERVED line is
terminated and bused. This line is set aside for future use and MUST NOT be used in any
VMEbus board designs.

Notes:
1. The dotted line shows the upper limit for current that can be safely drawn per +5 Vdc power
pin where two or more pins are connected to a common onboard.
2. The solid line shows the upper limit for current that can be safely drawn per +5 Vdc power
pin where each pin is connected to a separate power grid.

Figure 5-7. Current Rating For Power Pins



CHAPTER 6

ELECTRICAL SPECIFICATIONS

6.1 INTRODUCTION

The transmission of data between VMEbus boards such as processors, memories and I/0
devices takes place over one or two backplanes, depending on the design. The rules in this
chapter ensure proper timing, minimal noise and minimal cross talk problems on the backplane
signal lines. The design of VMEbus backplanes is governed by the following RULES:

RULE 6.1:
VMEbus backplanes MUST NOT have any signal conductors longer than 500 mm (19.68
inches).

RULE 6.2:
VMEbus backplanes MUST NOT have more than 21 slots.

RULE 6.3:
For those lines requiring termination (see Section 6.7) the backplane MUST provide some
means for terminating them at both ends of the signal line.

RULE 6.4:
The backplane MUST provide power conductors for distribution of +5V, +5V STDBY, +12V,
and -12V to all of the power pins specified in Section 7.6.

RULE 6.5:
The backplane MUST provide ground connections to all of the ground pins specified in Section
7.6.

PERMISSION 6.1:
VMEbus signal lines are normally driven by bipolar drivers, but any technology which complies
with this specification MAY be used.

6.2 POWER DISTRIBUTION

Power in a VMEbus system is distributed on the backplane(s) as regulated direct current (DC)
voltages. The available voltages are:

+5 Vdc This is the main power source for most VMEbus systems. Most of the
system circuitry, including TTL logic, MOS microprocessors, and
memories, requires this voltage.

+/-12 Vdc These are often used for powering RS232C drivers. They are also
sometimes used for powering MOS and analog devices. In some
cases -5 Vdc bias voltage or -5.2 Vdc ECL voltages are also derived
from the -1 2 Vdc source using on-board regulators. These supplies



normally don’t supply as much power to the VMEbus system as the +5
Vdc source does.

+5 Vdc STDBY This is used to sustain memory, time-of-day clocks, etc, when the +5
Vdc power is lost.

6.2.1 DC Voltage Specifications

Table 6-1 summarizes the DC voltage specifications. The listed specifications are the
maximum allowed variance as measured at the connector pins of any card plugged into the
backplane.

RECOMMENDATION 6.1:
Design and connect backplanes so that the power supply sense point is located somewhere
near the center of the backplane, and as close as possible to the point where power is
introduced into the backplane.

OBSERVATION 6.1:
Placing the power supply sense point near the power input point prevents boards near the
power input point from receiving too high a voltage.

Table 6-1. Bus Voltage Specification

MNEMONIC DESCRIPTION ALLOWED VARIATION
(See OBSERVATION 6.2)

RIPPLE/NOISE
BELOW 10 Mhz
(Peak-to-Peak)

+5V +5 Vdc +0.25V/-0.125V 50 mV
+12V +1 2 Vdc power +0.60V / -0.36V 50 mV
-12V -1 2 Vdc power -0.60V / +0.36V 50 mV

+5V STDBY +5 Vdc standby +0.25V / -0.125V 50 mV
GND Ground REFERENCE

OBSERVATION 6.2:
The non-symmetric variation given in Table 6-1 ensures that the DC power remains within the
tolerance required by most ICs despite the typical voltage drops that occur in the power
distribution network.

OBSERVATION 6.3:
The power consumed by some systems fluctuates over a wide range during normal system
operation. For example, dynamic memory refreshing might cause significant fluctuations if
large amounts of memory are refreshed at one time. In this case the response time of the
voltage distribution system becomes important.

RECOMMENDATION 6.2:
Use bypass capacitors on VMEbus boards to minimize the effects of power transient.

6.2.2 Pin And Socket Connector Electrical Ratings



RULE 6.6:
The 96 pin connector used by the VMEbus MUST provide the following:

Voltage rating: >= 100 volts DC, isolation pin to pin
Contact resistance: <= 50 milliohms, at rated current
Insulation resistance: >= 100 Megohms, pin to pin

6.3 ELECTRICAL SIGNAL CHARACTERISTICS

RULE 6.7:
VMEbus boards MUST NOT drive any backplane signal line to a higher steady-state voltage
than the highest voltage on any of its +5V power pins, or to a lower steady state voltage than
the lowest voltage on any of its GND pins.

RULE 6.8:
VMEbus boards MUST use drivers and receivers that meet the following characteristics:
Steady-state driver low output level =< 0.6 V
Steady-state receiver low input level =< 0.8 V
Steady-state driver high output level => 2.4 V
Steady-state receiver high input level =< 2.0 V

Figure 6-1 gives a simple graphic representation of these levels.

VMEbus boards drive the backplane lines with three-state, open collector, and totem pole
drivers. Section 6.4 specifies the drive and loading requirements for the various signal lines.
Section 6.7 provides a summary, showing which types of drivers are used to drive each signal
line.

Figure 6-1. VMEbus Signal Levels

2.94V High Level V (Terminator)
2.4 V ---------------------- Voh min

////////////////////// STEADY STATE NOISE MARGIN
2.0 V ---------------------- Vih min

Transition Region
0.8V ---------------------- Vil max

////////////////////// STEADY STATE NOISE MARGIN
0.6 V ---------------------- Vol max

Low Level

RULE 6.9:
When making voltage threshold measurements on a VMEbus board to verify compliance with
timing specifications, the ground reference MUST be taken from the board’s ground pm
nearest the signal pin being measured, and the signal voltage MUST be measured on the
board’s connector pin.



6.4 BUS DRIVING AND RECEIVING REQUIREMENTS

This Section defines the driver and receiver specifications for all VMEbus signal lines. Table 6-
2 lists all of the signals and shows which of the following subsections discusses it.

6.4.1 Bus Driver Definitions

Totem-pole, three-state, and open-collector drivers are defined as follows:

Totem-pole -- an active driver in both states which sinks current in the low state and sources
current in the high state. Totem-pole drivers are used on signals having only a single driver per
line (e.g., daisy-chain lines).

Three-state -- similar to a totem-pole driver except that it can go to a high impedance state
(drivers turned off) in addition to low and high logic states. Three-state drivers are used for
lines that can be driven by several devices at different points on the bus (e.g., address or data
lines). Only one of these drivers can be active at any one time.

Open-collector -- sinks current in the low state but sources no significant current in the high
state. Terminating resistors on the backplane ensure that the signal line voltage rises to a high
level whenever it is not driven low. Open-collector drivers are used for signal lines which can
be driven by several devices simultaneously (e.g. interrupt and bus request lines).

Table 6-2. Bus Driving And Receiving Requirements

SIGNAL NAME SUB-SECTION
6.4.2.x

A01-A31 2
ACFAIL* 5

AM0-AM5 2
AS* 1

BBSY* 5
BCLR* 3
BERR* 5

BG0OUT*-BG3OUT* 4
BR0*-BR3* 5
D00-D31 2

DS0* 1
DS1 * 1

DTACK* 5
IACK* 2, 5

IACKOUT* 4
IRQ1 *-IRQ7* 5

LWORD* 2
SERCLK 3



SYSCLK 3
SYSFAIL* 5

SYSRESET* 5
WRITE* 2

6.4.2 Driving And Loading RULES For AII VMEbus Lines

RULE 6.10:
All VMEbus boards MUST provide clamping on each VMEbus signal line that they monitor to
prevent negative excursions below -1 .5 V.

OBSERVATION 6.4:
Standard 74LSxxx and 74Fxxx devices have internal clamping diodes on their inputs that will
satisfy the clamping requirement specified in RULE 6.10.

RULE 6.11
VMEbus receivers MUST guarantee detection of a high logic level above a threshold of 2.0
volts, as shown in Figure 6-1.

RULE 6.12:
VMEbus receivers MUST guarantee detection of a low logic level below a threshold of 0.8
volts, as shown in Figure 6-1.

PERMISSION 6.2:
A three-state driver MAY be used as a totem-pole driver if its output is permanently

6.4.2.1 Driving And Loading RULES For High Current Three-State Lines
(AS*, DS0*, DS1*)

RULE 6.13:
IF a VMEbus board drives AS*, DS0*, or DS1*,
THEN its drivers for these lines MUST meet the following specifications:
Low state sink current: IOL >= 64 mA
Low state voltage: VOL <= 0.6V at I0L= 64 mA
High state source current: IOH >=3 mA
High state voltage: VOH >= 2.4V at I0H = 3 mA
Minimum source current with board
pin grounded:

IOS >= 50 mA at 0V

Maximum source current with board
pin grounded:

IOS < 225 mA at 0V

RULE 6.1 4:
When drivers are turned off, VMEbus boards MUST limit their loading of AS*, DS0* and DS1*
to the following values:

Current sourced by board at 0.6 V, including leakage
current:

IOZL+IIL <= 450 uA



Current sunk by board at 2.4 V including leakage
current:

IOZH+IIH <= 100 uA

Total capacitive load on signal, including signal trace: CT <= 20 pF

OBSERVATION 6.5:
The source and sink currents listed in RULES 6.13 and 6.14 include both driver and receiver
currents sourced and sunk on the board.

SUGGESTION 6.1:
Use 74S241 or 74F241/244 devices to drive the lines AS*, DS0*, and DS1*.
Use 74LS240, 74LS241, or 74LS244 devices to receive the lines AS*, DSO*, and

6.4.2.2 Driving And Loading RULES For Standard Three-State Lines.
(A01-A31 , D00-D31 , AM0-AM5, IACK*, LWORD*, WRITE*)

RULE 6.1 5:
IF a VMEbus board drives the lines A01-A31, D00-D31, AM0-AM5, IACK*, LWORD*, or
WRITE*,
THEN its drivers for these lines MUST meet the following specifications:

Low state Sink current: IOL >= 48 mA
Low state voltage: V0 <= 0.6V at IOL = 48 mA
High state source current: IOH >= 3 mA
High state voltage: VOH >= 2.4V at IOH = 3 mA
Minimum source current with board pin
grounded:

IOS >= 50 mA at 0V

Maximum source current with board pin
grounded:

IOS <= 225 mA at 0V

RULE 6.1.6:
When drivers are turned off, VMEbus boards MUST limit their loading of the lines A01-A31 ,
D00-D31 , AM0-AM5, IACK*, LWORD*, and WRITE* to the following values:
Current sourced by board at 0.6 V, including leakage
current:

IOZL+IIL <= 700 uA

Current sunk by board at 2.4 V, including leakage
current:

IOZH+IIH <= 150 uA

Total capacitive load on signal, including signal trace: CT <= 20 pF

OBSERVATION 6.6:
The source and sink currents specified in RULES 6.15 and 6.16 include both driver and
receiver currents sourced and sunk on the board.

SUGGESTION 6.2:
Use 74ALS645-1, 74F244 74AS573, or 74AS580 devices to drive the lines A01-
A31, D00-D31 , AM0-AM5, IACK*, LWORD*, and WRITE*.
Use 74LS240, 74LS241, or 74LS244 devices to receive the lines A01-A31, D00-D31, AM0-
AM5, IACK*, LWORD*, and WRITE*.



Use 74ALS645-1, 74ALS245A-1, 74ALS646-1, or 74ALS648-1 devices to transceive the lines
A01-A31 , D00-D31 , AM0-AM5, IACK*, LWORD*, and WRITE*.

6.4.2.3 Driving And Loading RULES For High Current Totem-PoIe Lines
(SERCLK, SYSCLK, BCLR*)

RULE 6.1.7:
VMEbus systems MUST have no more than one board driving each of the lines SERCLK,
SYSCLK, or BCLR*. Its drivers for these lines MUST meet the following specifications:
Low state sink current: I0L >= 64 mA
Low state voltage: V0L <= 0.6V at I0L = 64 mA
High state source current: IOH >= 3 mA
High state volta9e: VOH >= 2.4Vat 10H =3 mA
Minimum source current with board pin grounded: I0S >=  50 mA at 0 V
Maximum source current with board pin
grounded:

I0S <= 255 mA at 0V

RULE 6.1 8:
All VMEbus boards MUST limit their loading of the lines SERCLK, SYSCLK, and BCLR* to the
following values:
Current sourced by board at 0.6 V, including leakage current: IOZL+IIL <= 600 uA
Current sunk by board at 2.4 V, including leakage current: IOZH+IIH <= 50 uA
Total capacitive load on signal including signal trace, for
system controllers (which have drivers):

CT <= 20 pF

Total capacitive load on signal, including signal trace, for
other boards (which have no drivers)

CT <= 12 pF

OBSERVATION 6.7:
The source and sink currents specified in RULES 6.17 and 6.18 include both driver and
receiver currents sourced and sunk on the board.

SUGGESTION 6.3:
Use 74S241 or 74F241/244 devices to drive the lines SERCLK, SYSCLK, and BCLR*.
Use 74LS240, 74LS241 or 74LS244 devices to receive the lines SERCLK, SYSCLK, and
BCLR*.

6.4.2.4 Driving And Loading RULES For Standard Totem-PoIe Lines

(BG0OUT*-BG30UT*/BG0IN*-BG31N*, IACKOUT*/IACKIN*)

IF a VMEbus board drives the lines BG0OUT*-BG30UT*/BG0IN*-BG31N*, or
IACKOUT*/IACKIN* ,
THEN its drivers for these lines MUST meet the following specifications:

Low state sink current: IOL >= 8 mA
Low state voltage: VOL <= 0.6V at 10L = 8 mA



High state source current: IOH >= 400 uA
High state voltage: VOH >= 2.7V at 10H = 400 uA

All VMEbus boards MUST limit their loading of each of the lines BG0OUT*-BG30UT*/ BG0IN*-
BG31N*, and iACKOUT*/IACKIN* to the following values:

Current sourced by board at 0.6 V, including leakage current: IOZL+IIL <= 600 uA
Current sunk by board at 2.4 V including leakage current: IOZH+IlH <= 50 uA
Total capacitive load on signal, including signal trace: CT <= 20 pF

OBSERVATION 6.8:
The source and sink currents specified in RULES 6.19 and 6.20 include both driver
and receiver currents sourced and sunk on the board.
SUGGESTION 6.4:
Use any standard device that meets the specifications above to drive the lines
BG0OUT*-BG30UT*/BG0IN*-BG31N*, and IACKOUT*/IACKIN*.
Use 74LS240 74LS241, or 74LS244 devices to receive the lines BG3OUT*BG30UT;/BG0IN*-
BG31N*, and IACKOUT*/IACKIN*.

6.4.2.5 Driving And Loading RULES For Open-Collector Lines
(BR0*-BR3*, BBSY*, IRQ1*-IRQ7*, DTACK*, BERR*, SYSFAIL*, SYSRESET*, ACFAIL*, and
IACK*)

RULE 6.21:
IF a VMEbus board drives the lines BR0*-BR3*, BBSY*, IRQ1*-IRQ7*, DTACK*
BERR*, SYSFAIL*, SYSRESET*, ACFAIL*, or IACK*
THEN its drivers for these lines MUST meet the following specifications:

Low state sink current: IOL >= 48 mA 
Low state voltage: VOL =< 0.6V at I0L = 48 mA

RULE 6.22:
All VMEbus boards MUST limit their loading of the lines BR0*-BR3*, BBSY*, IRQ1*- IRQ7*,
DTACK*, BERR*, SYSFAIL*, SYSRESET*, ACFAIL*, and IACK* to the following values:
Current sourced by board at 0.6 V
including leakage current:

IOZL+IIL <= 400 uA (DTACK* and BERR*)
IOZL+IIL <= 600 uA (all others)

Current sunk by board at 2.4 V, including
leakage current:

IOZH+IIH <= 50 uA

Total capacitive load on signal,including
signal trace:

CT <= 20 pF

OBSERVATION 6.9:
The sink current specified in RULES 6.21 and 6.22 includes both driver and receiver currents
sourced and sunk on the board.

SUGGESTION 6.5:



Use 74S38 devices to drive the lines BR0*-BR3*, BBSY*, lRQ1*-lRQ7*, DTACK* BERR*,
SYSFAIL*, ACFAIL*, and IACK*.
Use 74LS240, 74LS241, or 74LS244 devices to receive the lines BR0*-BR3*, BBSY* IRQ1*-
lRQ7*, DTACK*, BERR*, SYSFAIL*, SYSRESET*, ACFAIL*, and IACK*.

SUGGESTION 6.6:
Since most TTL drivers do not work reliably when the +5 Vdc power source is out of  its
specified range, drive SYSRESET* on a POWER MONITOR module with a driver built from a
discrete high-gain small signal transistor.

6.5 BACKPLANE SIGNAL LINE INTERCONNECTIONS

The VMEbus is a high performance interface system. Its design takes into account
transmission line effects on the backplane. The address and data set-up times specified in
Chapters 2 and 4 take into account the fact that most drivers available today do not reliably
drive backplane signal lines from the low to the high level until there is a reflection from the end
of the bus. Although these reflections serve a useful purpose, they cannot be excessive or
ringing will result. The following paragraphs specify the backplane characteristics that achieve
the desired result.

6.5.1 Termination Networks

RULE 6.23:
Termination networks MUST be used on each end of all VMEbus signal lines except the daisy-
chain lines.

OBSERVATION 6.10:
The terminations in the VMEbus serve four purposes:

1. They reduce reflections from the ends of the backplanes.
2. They provide a high state pull-up for open-collector drivers.
3. They restore the signal lines to the high level when three-state devices are disabled .
4. They provide a standing current for the driver sink transistor to switch off, causing the signal
line to rise more swiftly on positive transitions.

The Thevenin equivalent of the termination is shown in Figure 6-2. The voltage divider also
shown provides this termination value.

OBSERVATION 6.1 1:

IF a maximum tolerance of +/- 5% is maintained on the resistor values and source voltage
used in the resistor network shown in Figure 6-2,
THEN the circuit shown will meet the tolerances shown for the Thevenin equivalent.

OBSERVATION 6.12:
The resistor network shown in Figure 6-2 presents its Thevenin equivalent impedance only
when its +5V source is adequately decoupled to ground by a bypass capacitor.



RECOMMENDATION 6.3:
Provide a bypass capacitor with a value in the range of 0.01 to 0.1 uF as close as possible to
the Vcc pin of each resistor termination package.

PERMISSION 6.3:
Any resistor network and voltage source MAY be used to provide the termination, as long as
they provide the Thevenin equivalent shown in Figure 6-2.



Figure 6-2. Standard Bus Termination

6.5.2 Characteristic Impedance



Each signal line in the backplane has an associated characteristic impedance Zo. This
characteristic impedance is important because discontinuities in Zo (due to capacitive effect
and loads on the bus) and mismatches between Zo and the terminations can cause distortions
of signal waveforms.

Figure 6-3 shows a microstrip signal line cross Section which is the normal configuration for a
multilayer backplane signal line. The Zo is a function of the width and thickness of the line, the
thickness of the dielectric, and its relative dielectric constant. Figure 6-4 shows characteristic
impedance versus microstrip line width for common thickness of fiberglass-epoxy board. More
information on Microstrip lines can be found in the MECL System Design Handbook, Motorola,
1983.

The terminations on the VMEbus signal lines reduce distortion of their signal waveforms.
Although a perfect impedance match (which totally eliminates distortions due to reflections) is
not maintained between the termination networks and the signal lines, it is important not to
allow too great a mismatch, as might be the case if a signal line’s Zo value is too Iow.

RECOMMENDATION 6.4:
When designing a VMEbus backplane, choose a signal line width and board thickness that
gives a Zo (as calculated from Figure 6-4) as close as possible to 100 ohms.

The actual characteristic impedance of a backplane signal line is called the effective
characteristic impedance (Zo,), and will be lower than Zo, due to the capacitance of plated-
through holes and connector pins. This additional capacitance makes Zo, go below 100 ohms.
Although plated-through holes are necessary to accommodate connectors, other holes should
be kept to a minimum.

Figure 6-3. Backplane Microstrip Signal Line Cross Section



Figure 6-4. Zo Versus Line Width



Figure 6-5. Co Versus Line Width

The backplane signal line impedance (without any boards plugged into the backplane) can be
calculated with the following equation:

Zo = 1 / sqrt(1 + Cd/Co)

where

Zo = The impedance of the microstrip line, ignoring the loading effects of plug-in pc
boards, connectors, and plated-through holes. (See Figure 6-4)

Cd = The distributed capacitance, per unit of distance, of the plated- through holes,
and backplane connectors

Co = The intrinsic line capacitance, per unit of distance, of the microstrip line, ignoring
the loading effects of plug-in pc boards, connectors, and plated-through holes.
(See Figure 6-5)

Zo’ = The backplane signal line impedance, including the loading effects of
connectors, and plated-through holes but excluding the loading effects of plug-in
pc boards.



OBSERVATION6.13:
Typical Zo, values for a VMEbus backplane with no boards inserted, range from 50 to 60
ohms. If this impedance is 50 ohms, or higher it will provide satisfactory operation.

6.5.3 Additional Information

RULE 6.24:
Circuit traces from the 96 pin connectors to the on-board circuitry MUST NOT have a length of
greater than 50.8 mm (2 inches).

OBSERVATION 6.14:
IF the trace from the 96 pin connector to on-board circuitry branches,
THEN the length of each branch is added to get the total length specified in RULE 6 .24.

RULE 6.25:
There MUST NOT be more than one driver driving the SYSCLK and SERCLK lines.

RULE 6.26:
IF the SYSTEM CLOCK DRIVER and the SERIAL CLOCK DRIVER modules are provided,
THEN they MUST be installed in slot 1 of the backplane.

OBSERVATION 6.15:
Locating the SYSTEM CLOCK DRIVER and the SERIAL CLOCK DRIVER on the board in slot
1 minimizes the distortion of their waveforms from the reflections off the ends of the backplane.

SUGGESTION 6.7:
If actual capacitance loading values cannot be obtained from manufacturer specifications
sheets, the following values can be used to estimate the total capacitive loading of a VMEbus
board:

The typical capacitance of a receiver: 3 - 5 pf
The typical capacitance of a driver: 10 - 12 pf
The typical capacitance of a transceiver: 15 - 18 pf
The typical capacitance of a 50.8 mm (2 inches) PC trace: 2 - 3 pf

OBSERVATION 6.1.6:
Circuit traces which run parallel to each other, such as in a backplane, sometimes induce
signal transitions in each other. This phenomenon is commonly known as cross talk. When
designing VMEbus backplanes, the spacings of lines and their position relative to ground and
power planes have a large effect on the amount of cross talk observed.

SUGGESTION 6.8:
Propagation delays through bus drivers depend on how heavily they are loaded and VMEbus
signal lines typically represent heavy loads. This has to be taken into account when calculating
worst case timing. If the manufacturer’s data sheet for the driver gives a propagation delay for
a 300 pf load, use that to do the worst case calculations. If the only propagation delay values
are for a 30 pf load, add 10 ns to the propagation delay and 15 ns to the turn-on delay.



6.6 USER DEFINED SIGNALS

RECOMMENDATION 6.5:
If a board has a 96 pin connector in its P2 location, do not allow any of the P2 pins to be driven
to a voltage greater than +15V. This reduces the likelihood of serious damage to the VMEbus
system in the event that a signal trace from one of these pins is accidentally shorted to some
other signal line.

6.7 SIGNAL LINE DRIVERS AND TERMINATIONS

This Section summarizes the types of drivers which have to be used for each of the signal
lines on the VMEbus.
In order to simplify Table 6-3, an abbreviated notation is used to describe the various types of
drivers. The notations used are shown below:

Totem-pole (high current) - TP HC
Totem-pole (standard) - TP STD
Three-state (high current) - 3 HC
Three-state (standard) - 3 STD
Open-collector - OC

For detailed specifications, see Section 6.4.

Table 6-3. Bus Driver Summary

SIGNAL MNEMONIC SIGNAL NAME DRIVER
TYPE

BUSED AND
TERMINATED?

A01-A31
(31 lines)

ADDRESS BUS 3 STD YES

ACFAIL* AC POWER FAILURE OC YES
AM0-AM5
(6 lines)

ADDRESS MODIFIER 3 STD YES

AS* ADDRESS STROBE 3 HC YES
BBSY* BUS BUSY OC YES
BCLR* BUS CLEAR TP HC YES
BERR* BUS ERROR OC YES

BG0IN*-BG3IN*
BG0OUT*-BG30UT*

(Daisy-chain)

BUS GRANT DAISY-
CHAIN

TP STD NO

BR0*-BR3*
(4 lines)

BUS REQUEST OC YES

D00-D31
(32 lines)

DATA BUS 3 STD YES

DS0*-DS1*
(2 lines)

DATA STROBES 3 HC YES



DTACK* DATA TRANSFER
ACKNOWLEDGE

OC YES

IACK* INTERRUPT
ACKNOWLEDGE

3 STD or OC YES

IACKIN*/IACKOUT*
(Daisy-chain)

INTERRUPT
ACKNOWLEDGE DAISY-

CHAIN

TP STD NO

IRQ1*-IRQ7*
(7 lines)

INTERRUPT REQUEST OC YES

LWORD* LONGWORD 3 STD YES
RESERVED RESERVED ----- YES

SERCLK SERIAL CLOCK TP HC YES
SERDAT* SERIAL DATA OC YES
SYSCLK SYSTEM CLOCK TP HC YES

SYSFAIL* SYSTEM FAILURE OC YES
SYSRESET* SYSTEM RESET OC YES

WRITE* WRITE 3 STD YES



CHAPTER 7

MECHANICAL SPECIFICATIONS

7.1 INTRODUCTION

Information is provided in this chapter to ensure that the VMEbus board assemblies,
backplanes, subracks, and associated mechanical accessories are dimensionally compatible.

The mechanical dimensions given in this chapter conform to IEC publications 297-1, 297-3
297-3A and 603-2. The electrical characteristics for VMEbus connectors, as specified in
Chapters 5 and 6 supersede publication 603-2 where they differ.

IEC publication 603-2 describes a family of connector types which are identified by labels of
the form:

603-2-IEC-xxxxxx-xxx

All of the P1/J1 and P2/J2 connectors used on VMEbus boards and backplanes are members
of this family. In this chapter, the label 603-2-IEC-xxxxxx-xxx is used when referring to all of
these connector types as a group. The label 603-2-IEC-C096Mx-xxx is used when referring to
the 96-pin male connector types within this family which are used on VMEbus boards. 603-2-
IEC-C096Fx-xxx is used when referring to the 96-pin female connector types which are used
on VMEbus backplanes.

Figure 7-1 is a front view of a 19-inch width subrack which shows how single height and
double height VMEbus boards can be mixed in a single subrack. Boards are inserted into the
subrack from the front, in a vertical plane with the component face of the board on the right.

PERMISSION 7.1:
A VMEbus system MAY be composed of single height boards, double height boards, or a
mixture of both.

RULE 7.1:
Single height VMEbus subracks MUST have a single “J1” backplane.

RULE 7.2:
Double height VMEbus subracks MUST have
1) a “J1” backplane mounted in the upper portion of the subrack, OR
2) a "J1" and a "J2" backplane, with the J1 backplane mounted in the upper portion and the J2
backplane mounted in the lower portion.
OR
3) a double height backplane which provides both J1 and J2 connectors.

RULE 7.3:
VMEbus backplanes MUST NOT have more than 21 slots.



PERMISSION 7.2:
When using backplanes of fewer than 21 slots, the VMEbus subrack MAY be less than the
standard 482.6 mm (1 9 inches) rack size.

RULE 7.4:
Except for the rack width, which varies depending on the number of slots it supports all
subrack dimensions MUST agree with those given in this chapter to ensure mechanical
compatibility between the boards and the subrack.

7.2 VMEbus BOARDS

RECOMMENDATION 7.1:
Make VMEbus boards 1.6 +0.2 mm (0.063 +0.008 inch) thick.

OBSERVATION 7.1:
The thickness of VMEbus boards is important because the subrack’s guide rails are designed
to accommodate boards of this thickness. Thicker boards might not fit into the guides and
thinner boards might not be guided properly into the backplane’s J1 and J2 connectors.

OBSERVATION 7.2:
The dimensioning of the 603-2-IEC-xxxxxx-xxx connectors provides a certain distance
between the connector’s mounting face and the center line of each of the connector’s pins.
This ensures that the P1 and P2 connector pin centers will alien properly with the J1 and J2
connectors of the backplane.

PERMISSION 7.3:
VMEbus boards MAY be designed with board thicknesses greater than 1 .6 mm (0.063 inch) if:
1. the thickness of the top and bottom edges of the board, which fit into the guiderails is
reduced to 1.6 mm (0.63 inch) for distance of 2.5 mm (0.098 inch) from the top and bottom
edges of the board (See Figure 7-2 and Figure 7-3) and
2. the mounting surface provided by the board for the IEC 602-3 connector(s) is 4.07 mm
(0.160 inch) from the interboard separation plane. (See Figure 7-5)

Two board sizes are defined as standard VMEbus boards: single height and double height
(see Figure 7-2 and Figure 7-3).

7.2.1 Single Height Boards

OBSERVATION 7.3:
A single height VMEbus board is 100mm (3.937 inch) high and 160 mm (6.299 inch) deep with
an area of approximately 1 60.0 sq. cm (24.8 sq. inch).

RULE 7.5:
All single height boards MUST be designed according to the dimensions given in
Figure 7-2.

RULE 7.6:



The hole pattern for the 96 pin 603-2-IEC-CO96Mx-xxx P1 connector MUST be as shown in
Figure 7-2.

SUGGESTION 7.1:
Use the PC layout grid shown in Figure 7-2.

OBSERVATION 7.4:
Modular front panel hardware is available from several manufacturers which, when mounted
on the grid shown in Figure 7-2, properly aligns with the front panel grid shown in Figure 7-7.

PERMISSION 7.4:
Components, other than the 603-2-lEC-CO96Mx-xxx connector, MAY be placed in such a way
that they do not align with the grid pattern.

7.2.2 Double Height Boards

OBSERVATION 7.5:
A double height VMEbus board is 233.35 mm (9.187 inch) high and 160 mm (6.299 inches)
deep with an area of approximately 373.4 sq. cm (57.9 sq. inch).

RULE 7.7:
All double height boards MUST be designed according to the dimensions given in Figure 7-3.

RULE 7.8:
The hole pattern for the 96 pin 603-2-lEC-CO96Mx-xxx P1 connector MUST be as shown in
Figure 7-3.

RULE 7.9:
IF a 96 pin 603-2-IEC-CO96Mx-xxx connector is used for P2,
THEN its hole pattern MUST be as shown in Figure 7-3.

OBSERVATION 7.6:
As in the case of the single height boards above, the grid shown in Figure 7-3 properly aligns
modular front panel components with the front panel grid shown in Figure 7-8.

PERMISSION 7.5:
Components, other than the 603-2-IEC-xxxxxx-xxx connectors, MAY be placed in such a way
that they do not align with the grid pattern.

OBSERVATION 7.7:
There is a discontinuity of 1.27 mm (0.05 inch) between the 2.54 (0.10 inch) grid patterns for
the upper and lower half of the board.

7.2.3 Board Connectors

The single height board has only one connector on its back edge. It is called the P1 connector.
A double height board has either one or two connectors on its back edge. If it has one



connector, that connector is called the P1 connector and is located on the upper half of the
back edge. If it has two connectors the upper one is called the P1 connector and the lower one
is called the P2 connector.

RULE 7.10:
The P1 and P2 connectors of all VMEbus boards MUST meet or exceed the mechanical
specifications of a 603-2-IEC-C096Mx-xxx class 2 connector, and MUST be mounted as
shown in Figure 7-4.

OBSERVATION 7.8:
603-2-IEC class 2 connectors have a minimum mechanical endurance of 400
insertion/extraction cycles.

OBSERVATION 7.9:
The symmetry symbol in the box below each board outline in Figure 7-4 sets an upper limit on
how much the connector’s center line can be tilted with respect to the board’s lower edge. This
limit is described in the following rule.

RULE 7.11:
The perpendicular distance (d1 ) from the board’s lower edge to the point A in Figure 7-4
MUST NOT differ its perpendicular distance (d2) to point B by more than 0.3 mm (0.012 inch).

RULE 7.12:
IF a VMEbus board is designed to use the center row of P2 for address or data bus expansion,
or the board requires more power than the P1 connector can provide ,
THEN a 96 pin 603-2-IEC-C096Mx-xxx P2 connector MUST be provided and it MUST be
mounted as shown in Figure 7-4.

PERMISSION 7.6:
Where neither address nor data bus expansion is required, and where the board does not
require more power than the P1 connector can provide, any 603-2-IEC-xxxxxx-xxx connector
MAY be used for P2 on a double height VMEbus board or the board MAY be designed without
a P2 connector.

PERMISSION 7.7:
On double height boards, the two outside rows of pins on the P2 connector MAY be used to
provide user defined connections (See Section 7.6.2).

PERMISSION 7.8:
I/0 cables MAY be connected to the front edge of a VMEbus board. No connectors are
prescribed for these cable connections.

SUGGESTION 7.2:
Where possible, avoid the use of cable connections to the front edge of VMEbus boards. This
makes it much easier to install and remove boards from the subrack during maintenance.

7.2.4 Board Assemblies



The board assembly typically consists of a PC board, as defined above with either one or two
603-2-IEC-xxxxxx-xxx connectors affixed to the board’s back edge, electronic components,
and an optional front panel with handles. For more detail on the front panels see Section 7.3.

RULE 7.13:
Solder filets, tracking, and components on VMEbus boards MUST NOT be closer than 2.5 mm
(0.098 inch) from the top and bottom edges of the board to guarantee clearance between them
and the board guides. Figure 7-2 and Figure 7-3 show these dimensions.

Figure 7-5 shows a cross sectional view of a PC board, its front panel, its connector and the
backplane. The dimensions given are nominal values and are based upon the dimensions
given in the other drawings in this chapter.

7.2.5 Board Widths

PERMISSION 7.9:
VMEbus boards MAY be designed to occupy more than one slot.

VMEbus boards designed to occupy a single slot of the subrack are called single width boards.

7.2.6 VMEbus Board Warpage, Lead Length and Component Height

During the manufacturing process boards sometimes become warped.

RULE 7.14:
The sum of warpage and component lead length MUST be less than or equal to 2.47 mm
(0.097 inch) from where the solder side of an ideal (unwarped) board would be, and the sum of
component height and warpage (in the other direction) MUST be less than or equal to 13.71
mm (0.54 inch) plus an integral multiple (N) of 20.32 mm (0.8 inch), from where the component
side of an ideal (unwarped) board would be. (Where N = the number of slots that the board
occupies minus 1 .)
OBSERVATION 7.10:
During insertion into the subrack, the component leads of a board might contact the right edge
of the front panel to its left. For this reason, the board should be inserted carefully to avoid
bending the component leads.

SUGGESTION 7.3:
Where possible, trim the component lead lengths to 1.52 mm (0.06 inch) This makes
installation and removal of boards more convenient. Since the maximum allowable warpage is
affected by the length of these component leads, trimming them allows boards with larger
warpage to meet the specifications.

OBSERVATION 7.1 1:
The dimensions given in SUGGESTION 7.3 ensure that there will be a clearance of at east
2.54 mm (0.1 inch) between components of each board and the component leads of the board



to its right. This space allows adequate air flow and prevents additional warpage and vibration
from causing interboard contact.

RULE 7.15:
All VMEbus boards MUST be measured, after they are assembled, to ensure that the
combination of board warpage, component lead length, and component height do not exceed
the specified limits when the board is inserted into a subrack In order to properly make these
measurements, the board MUST be placed in a subrack (or a similar test fixture) while the
measurements are taken.

Figure 7-6 shows a board (single or double height) in a subrack, and shows how the
combination of board warpage, component lead length, and component height are to be
measured. The interboard separation planes defined in that Figure provide the reference from
which the measurements are made.

OBSERVATION 7.12:
A special test fixture, which simulates a subrack, is helpful in speeding up the measurements
shown in Figure 7-6.

7.3 FRONT PANELS

This section provides the mechanical specifications for the single and double height board
front panels and associated hardware.

PERMISSION 7.10:
VMEbus boards MAY be manufactured with or without front panels.

RECOMMENDATION 7.2:
Use front panels and associated hardware to prevent VMEbus boards from vibrating out of the
subrack, and to guide airflow through the subrack.

RULE 7.16:
IF front panels are used,
THEN screws MUST be provided on those panels to secure the top and bottom of the panels
to the subrack, and their screw threads MUST be M2.5 X 0.45 pitch (see Figure 7-7).

Figure 7-7 shows a single height, single width front panel. Figure 7-8 shows a double height,
single width front panel The grid format on the rear face of these front panels are aligned with
the board grids in Figure 7-2 and Figure 7-3 respectively.

Install front panel components such as Light Emitting Diodes (LEDs) and switches so that their
centers are aligned with a front panel and point.

7.3.1 Handles

The VMEbus board designer MAY design VMEbus boards front pane’s with or without
handles.



RECOMMENDATION 7.3
Provide handles to make VMEbus boards easier to remove from the subrack.

OBSERVATION 7.13
The handles available from various manufacturers vary somewhat in overall shape.

Choose handles whose depth and height conform to the dimensions shown in Figure 7-7 and
Figure 7-8.

RECOMMENDATION 7.4
When mounting handles on VMEbus board front panels, choose one or more of the locations
shown in Figure 7-7, Figure 7-8, Figure 7-11 and figure 7-12.

PERMISSION 7.12
On single height boards, handles MAY be installed in any of the following combinations:

1. Top only
2. Bottom only
3. Top and bottom

PERMISSION 7.13:
On double height boards handles MAY be installed in any of the following combinations:

1. Top only
2. Middle only
3. Bottom only
4. Top and middle
5. Bottom and middle
6. Top and bottom

OBSERVATION 7.14:
When double and single height boards share the same subrack, handles in the center of the
double height front panels align with the handles of single height boards forming an unbroken
line and giving a more consistent appearance.

OBSERVATION 7.15:
Removal of double height boards that have both a P1 and a 96-pin P2 connector requires up
to 180 N (40.5 lbf) of extraction force. Placing handles at the top and bottom of double height
boards makes removal of these boards easiest.

7.3.2 Front Panel Mounting

RECOMMENDATION 7.5:
IF front panels are used



THEN keep the reserved areas shown in Figure 7-9 and Figure 7-10 free of components to
allow for installation of front panel mounting brackets. Locate the holes used to mount these
brackets as shown in Figure 7-2 and Figure 7-3.

RECOMMENDATION 7.6.
IF front panels are used on double height boards
THEN provide at least one center mounting bracket at one of the two locations shown in Figure
7-10.

RULE 7.17:
IF front panels are used
THEN the test dimension shown in Figure 7-9 and Figure 7-10, from the rear face of the front
panel to the rear face of the connector, MUST be maintained.

OBSERVATION 7.16:
The test dimensions from the rear face of the front panel to the front face of the backplane
guarantee that the P1 and P2 connectors will be fully engaged and that the front panel
fasteners will be able to secure the board into the subrack.

7.3.3 Front Panel Dimensions

All dimensioning of the front panel is done from a datum point 0.15 mm (0.006 inch) to the left
of its top left corner as viewed from the front.

Single width front panels MUST be designed to the dimensions shown in Figure 7-7 and Figure
7-8.

RECOMMENDATION 7.7:
Make front panels 2.5 mm (0.098 inch) nominal thickness.

OBSERVATION 7.17:
The 20.02 mm (0.788 inch) width of the single slot front panels is 0.30 mm (0.012 inch)
narrower than the 20.32 mm (0.8 inch) slot spacing. This prevents mechanical interference
between adjacent front panels due to tolerances in the board assemblies and subracks.

RULE 7.19:
IF a board occupies more than one slot and has a front panel,
THEN the width of that front panel MUST be 20.02 mm (0.788 inch) plus an integral multiple
(N) of 20.32 mm (0.8 inch), where N is the number of slots that the board occupies.

RULE 7.20:
Single slot front panels MUST be equipped with one fastener at the top and another at the
bottom, located as shown in Figure 7-7 and Figure 7-8.

7.3.4 Filler Panels



Filler panels are sometimes used where the backplane positioning leaves a gap on I the left or
right end of the subrack’s front panel or where there are empty slots. These filler panels require
no mounting brackets because they are not attached to printed circuit boards. They are
secured to the subrack by screws or quarter-turn fasteners on their top and bottom ends like
the front panels of VMEbus boards.

Filler panels MUST be designed to conform to the dimensions given in Figure 7-11 and Figure
7-12.

Single slot filler panels MUST be equipped with one fastener at the top and another at the
bottom, located as shown in Figure 7-11 and Figure 7-12.

RECOMMENDATION 7.8:
Use filler panels on VMEbus based systems to maintain proper air flow within the subrack and
to improve the appearance of the assembled VMEbus system.

SUGGESTION 7.6:
Equip filler panels with handles. This will give a more consistent appearance when they are
installed in the same subrack with VMEbus boards that have front panels and handles.

SUGGESTION 7.7:
Provide additional mounting holes on filler panels wider than 101.60 mm (4.0 inch) to provide
better attachment to the subrack.

7.3.5 Board Ejectors / Injectors

OBSERVATION 7.18:
Several vendors offer different types of board ejectors/injectors that make insertion and
removal of VMEbus boards easier. Unfortunately, ejectors/injectors designed for use with one
vendor’s products do not always work with other vendor’s products. Because no agreement
has been reached between the various manufacturers, the VMEbus specification does not
specify any as the preferred type.

OBSERVATION 7.19:
The insertion force for a single 603-2-IEC-CO96Mx-xxx connector can be as high as 90 N
(20.23 lbf).

PERMISSION 7.14:
VMEbus boards MAY be equipped with any type of ejectors, injectors, or retainers as long as
they do not make the products they are used on incompatible with boards or subracks
designed to the VMEbus specifications.

7.4 BACKPLANES

The primary backplane is designated as the J1 backplane. In some cases this is the only
backplane in the VMEbus system. When a double height subrack is used, this backplane is
mounted in the upper portion of that subrack. When the expanded VMEbus is used, a second



backplane, designated the J2 backplane, is installed below the J1 backplane in the lower
portion of the subrack. This J2 backplane buses only the center row (row b) of the P2
connector pins, allowing the two outer rows (rows a and c) to be used to implement the
VMXbus or for any other user defined functions.

Board slots are designated 1, 2, 3, ... 21 , with the slot numbering starting at the left end of the
subrack, as viewed from the front. The daisy-chain propagation starts with slot 1 and goes to
21.

RULE 7.23:
J1 VMEbus backplanes MUST bus all signals in all slots except for the daisy-chained signals.
(See Section 7.6.1)

RULE 7.24:
When a J2 backplane is used to provide for 32 bit wide address and data transfers, it MUST
bus all pins of the center row (row b) of those slots for which it has connectors. (See Section
7.6.2)

RULE 7.25:
The 96 pin 603-2-IEC-CO96Mx-xxx connectors MUST be used on all J1 VMEbus backplanes
and on all J2 expansion backplanes.

RULE 7.26:
All VMEbus J1 backplanes MUST have some provision for jumpering the interrupt
acknowledge and bus grant daisy-chains when boards are not plugged into a slot.

SUGGESTION 7.8:
To provide for the Jumpering of the J1 backplane daisy-chains, use 603-2-IECCO96Fx-xxx
connectors that have wire-wrap pins.

SUGGESTION 7.9:
IF J1 connectors without wire-wrap pins are used,
THEN place all of the jumper pins for daisy-chains next to the J1 connector that they are
jumpering.

PERMISSION 7.1 5:
As long as all other requirements are met, and proper spacing is maintained between the J1
and J2 connectors, the J1 and J2 backplanes MAY be designed as a single PC board.

SUGGESTION 7.10:
Use 603-2-IEC-CO96Fx-xxx connectors with wire-wrap pins for the connectors on J2
backplanes. This allows attachment of ribbon cables and secondary backplanes to those pins.

7.4.1 BackpIane Dimensional Requirements

Figure 7-13 depicts a 21 slot backplane. Figure 7-14 shows where optional threaded studs can
be provided to connect DC power cables to the backplane.



PERMISSION 7.16:
VMEbus backplanes MAY be designed with up to 21 slots.

RECOMMENDATION 7.9:
When designing a backplane with fewer than 21 slots, make the width

(N x 20.32mm) - 1.44mm, +0/-0.3 mm

where N is the number of slots. This allows two backplanes to be installed next to each other
without wasting a slot position in the subrack.

RECOMMENDATION 7.10:

Do not design backplanes with widths greater than 425.28 mm (1 6.743 inch). Backplanes
longer than this might not fit into widely available subracks.

PERMISSION 7.17:
VMEbus backplanes MAY be designed with or without threaded studs for power cable
connections to the backplane. (See Figure 7-13 and Figure 7-14).

RULE 7.27:
Except for the width dimension which varies with the number of slots, and the optional
threaded studs, VMEbus backplanes MUST be designed to the dimensions given in Figure 7-
13 and Figure 7-14.

OBSERVATION 7.20:
The backplane dimensions shown in Figure 7-14 repeat every 20.32 mm (0.8 inch).

7.4.2 Signal LIne Termination Networks

RULE 7. 28:
VMEbus backplanes MUST either have built-in terminations or they MUST provide some way
to connect plug-on terminator boards for terminating all of the signal lines indicated in Section
7.6.1 and Section 7.6.2.

PERMISSION 7.1 8:
The termination circuitry MAY either be built onto the ends of the backplane or it MAY be
provided by separate modules that plug onto either the front or the back of the backplane at
the two end slots.

RULE 7.29:
Backplane signal trace lengths, including any plug-on terminator boards, MUST NOT exceed
508 mm (20.0 inches).

OBSERVATION 7.21:



The entire board width of a 21 slot VMEbus backplane is required to accommodate the 603-2-
IEC-xxxxxx-xxx connectors. Separate plug-on terminator modules are typically needed for
such a backplane.

7.5 ASSEMBLY OF VMEbus SUBRACKS

This section shows how VMEbus subracks are assembled. All horizontal dimensions are from
the left hand edge of the front opening of the subrack.

7.5.1 Subracks And SIot Widths

Figure 7-15 shows a typical double height 21 -slot subrack.

PERMISSION 7.19:
Double height subracks MAY be used to house double height boards or they MAY be sub-
divided by the installation of a bracket, into two single height sections, one above the other.

OBSERVATION 7.22:
The bracket allowed in PERMISSI0N 7.19 provides two board guides: the lower guide for the
board above it and the upper guide for the board below it.

SUGGESTION 7.11:
Where possible, install the left-most (slot 1) board guides so that their center line is 3.27 mm
(0.129 inches) from the left end of the rack opening. This provides sufficient clearance for the
component leads of the board installed in that slot, and doesn’t waste any horizontal space. (If
this board guide is installed farther to the right there will not be room for 21 slots.)

7.5.2 Subrack Dimensions

RULE 7. 30:
All double height VMEbus subracks MUST meet all of the dimensional requirements given in
Figure 7-1 5, except for the width dimension, which varies according to how many slots are in
the subrack.

RULE 7.31:
All single height VMEbus subracks MUST meet all of the dimensional requirements given in
Figure 7-15, except for the width dimension, which varies according to how many slots are in
the subrack, and the vertical distance between the lower and upper board guides, which is 1
00.2 mm, +0.4/-0.0 mm instead of 233.55 mm.

OBSERVATION 7.23:
The dimension from the front panel mounting surface to the front face of the backplane is
particularly critical, since it guarantees correct connector engagement.



Figure 7-1. Subrack with Mixed Board Sizes



NOTES:
1. All dimensions are shown in millimeters. Inch dimensions are shown in parentheses.
2. These grids are provided to help the board designer to align components with the front
panel grid.
3. RULE 7.32:
Boards MUST be 1 .6 +0.2 mm (0.063 +0.008 inch) thick in the guide area.

Figure 7-2. Single Height Board: Basic Dimensions



NOTES:
1. All dimensions are shown in millimeters. Inch dimensions are shown in parentheses.
2. These grids are provided to help the board designer to align components with the front
panel grid.
3. RULE 7.33:
Boards MUST be 1.6 +0.2 mm (0.063 +0.008 inch) thick in the guide area.



Figure 7-3. Double Height Board: Basic Dimensions

NOTE:
All dimensions are shown in millimeters. inch dimensions are shown in parentheses.

Figure 7-4: Connector Position On Single And Double Height Boards





NOTES:
1. For additional inforamtion regarding the allowed thickness of boards, see Section 7.2.
2. This 4.077 mm (0.160 in) dimesions is the same regardless of the thickness of the board.

Figure 7-5. Cross Sectional View of Board, Connector, Backplane, and Front Panel

NOTES:
1. All dimensions are shown in millimeters.  Inch dimensions are shown in parentheses.
2. SUGGESTION 7.12:
Trim component lead lengths to no more than 1.52 millimeters (0.06 inch).
3. RULE 7.34:
Component leads and components mounted on the solder side of the board MUST NOT
protrude through the interboard separation plane after it has been completely seated in the
backplane.
4. RULE 7.35:



Components mounted on the component side of the board MUST NOT be any closer than
2.54 millimeters (0.1 inch) to the interboard separation plane after it has been completely
seated in the backplane.

Figure 7-6. Component Height, Lead Length, and Board Warpage

NOTES:
1. All dimensions are shown in millimeters. Inch dimensions are shown in parentheses.
2. Dimensions given for height and depth of handles are suggestions only.
3. RECOMMENDATION 7.11:
Locate the mounting hole 7.62 mm (0.3 in) from the interboard separation plane.

PERMISSION 7.20:
The mounting hole MAY be located 12.7 mm (0.5 in) from the interboard separation plane.

Figure 7-7. Single Height, Single Width Front Panel



NOTES:
1. All dimensions are shown in millimeters. Inch dimensions are shown in parentheses.
2. Dimensions given for height and depth of handles are suggestions only.
3. RECOMMENDATION 7.12:
Locate the mounting hole 7.62 mm (0.3 in) from the interboard separation plane.
PERMISSION 7.21:
The mounting hole MAY be located 12.7 mm (0.5 in) from the interboard separation plane.

Figure 7-8. Double Height, Single Width Front Panel



NOTE:
1. All dimensions are shown in millimeters. inch dimensions are shown in parentheses.

Figure 7-9. Front Panel Mounting Brackets And Dimension Of Single Height Boards.



NOTE:
1. All dimensions are shown in millimeters. Inch dimensions are shown in parentheses.

Figure 7-10. Front Panel Mounting Brackets And Dimension Of Double Height Boards.



NOTES:
1. All dimensions are shown in millimeters. Inch dimensions are shown in parentheses.
2. RECOMMENDATION 7.13:
Where a panel is more than 50.8 millimeters (2.0 inch) wide use at least 4
mounting holes; two at the top and two at the bottom.
3. Dimensions given for height and depth of handles are suggestions only.

Figure 7-11. Single Height Filler Panel



NOTES:
1. All dimensions are shown in millimeters. inch dimensions are shown in parentheses.
2. RECOMMENDATION 7.14:



Where a panel is more than 50.8 millimeters (2.0 inch) wide use at least 4 mounting holes; two
at the top and two at the bottom.
3. Dimensions given for height and depth of handles are suggestions only.

Figure 7-12. Double Height Filler Panel

NOTES:



1. All dimensions are show in millimeters.  Inch dimensions are shown in parantheses.
2. Backplane width varies depending on the number of slots.

Figure 7-13.  Backplane Overall Dimensions





NOTE:
1. All dimensions are shown in millimeters. Inch dimensions are shown in millimeters.  Inch
dimensions are show in parentheses.

Figure 7-14. Backplane Detailed Dimensions





Figure 7-15. “Off-Board Type” Backplane Termination
(Viewed From Top Of Backplane)

Figure 7-16. “On-Board Type” Backplane Termination
(Viewed From Top Of Backplane)



Figure 7-17:  21 Slot Subrack



Figure 7-18. Board Guide Detail

7.6 VMEbus BACKPLANE CONNECTORS AND BOARD CONNECTORS

7.6.1 Pin Assignments For J1/P1 Connectors

Table 7-1 provides signal names for the J1/P1 connector pins. (The connector consists of
three rows of pins labeled rows a, b, and c.)

Table 7-1 . J1 /P1 Pin Assignments



PIN NUMBER ROW a SIGNAL
MNEMONIC

ROW b SIGNAL
MNEMONIC

ROW c SIGNAL
MNEMONIC

1 D00 BBSY* D08
2 D01 BCLR* D09
3 D02 ACFAIL* D10
4 D03 BG0IN* D11
5 D04 BG0OUT* D12
6 D05 BG1IN* D13
7 D06 BG1OUT* D14
8 D07 BG2IN* D15
9 GND BG20UT* GND

10 SYSCLK G3IN* SYSFAIL*
11 GND BG3OUT* BERR*
12 DS1* BR0* SYSRESET*
13 DS0* BR1* LWORD*
14 WRITE* BR2* AM5
15 GND BR3* A23
16 DTACK* AM0 A22
17 GND AM1 A21
18 AS* AM2 A20
19 GND AM3 A19
20 IACK* GND A18
21 IACKIN* SERCLK( 1 ) A17
22 IACKOUT* SERDAT*(1 ) A16
23 AM GND A15
24 A07 IRQ7* A14
25 A06 IRQ6* A13
26 A05 IRQ5* A12
27 A04 IRQ4* A11
28 A03 IRQ3* A10
29 A02 IRQ2* A09
30 A01 IRQ1 * A08
31 -12V +5VSTDBY +12V
32 +5V +5V +5V

Note: (1): See Appendix C for further information on the use of these signals.

7.6.2 Pin Assignments For The J2/P2 Connector

Table 7-2 provides signal names for the J2/P2 connector pins. (The connector consists of
three rows of pins labeled rows a, b, and c.)

Table 7-2. J2/P2 pin assignments



PIN NUMBER ROW a
SIGNAL

MNEMONIC

ROW b
SIGNAL

MNEMONIC

ROW c
SIGNAL

MNEMONIC
1 User Defined +5V User Defined
2 User Defined GND User Defined
3 User Defined RESERVED User Defined
4 User Defined A24 User Defined
5 User Defined A25 User Defined
6 User Defined A26 User Defined
7 User Defined A27 User Defined
8 User Defined A28 User Defined
9 User Defined A29 User Defined

10 User Defined A30 User Defined
11 User Defined A31 User Defined
12 User Defined GND User Defined
13 User Defined +5V User Defined
14 User Defined D16 User Defined
15 User Defined D17 User Defined
16 User Defined D18 User Defined
17 User Defined D19 User Defined
18 User Defined D20 User Defined
19 User Defined D21 User Defined
20 User Defined D22 User Defined
21 User Defined D23 User Defined
22 User Defined GND User Defined
23 User Defined D24 User Defined
24 User Defined D25 User Defined
25 User Defined D26 User Defined
26 User Defined D27 User Defined
27 User Defined D28 User Defined
28 User Defined D29 User Defined
29 User Defined D30 User Defined
30 User Defined D31 User Defined
31 User Defined GND User Defined
32 User Defined +5V User Defined



APPENDIX A

GLOSSARY OF VMEbus TERMS

A16 A type of module that provides or decodes an address on address
lines A01 through A15.

A24 A type of module that provides or decodes an address on address
lines A01 through A23.

A32 A type of module that provides or decodes an address on address
lines A01 through A31.

ARBITRATION The process of assigning control of the DTB to a REQUESTER.
ADDRESS-ONLY

CYCLE
A DTB cycle that consists of an address broadcast, but no data
transfer. SLAVES do not acknowledge ADDRESS-ONLY cycles
and MASTERS terminate the cycle without waiting for an
acknowledgment.

ARBITER A functional module that accepts bus requests from REQUESTER
modules and grants control of the DTB to one REQUESTER at a
time.

ARBITRATION BUS One of the four buses provided by the VMEbus backplane. This
bus allows an ARBITER module and several REQUESTER
modules to coordinate use of the DTB.

ARBITRATION
CYCLE

An ARBITRATION CYCLE begins when the ARBITER senses a
bus request. The ARBITER grants the bus to a REQUESTER,
which signals that the DTB is busy. The REQUESTER terminates
the cycle by releasing the bus busy signal which causes the
ARBITER to sample the bus requests again.

BACKPLANE
(VMEbus)

A printed circuit (PC) board with 96-pin connectors and signal
paths that bus the connector pins. Some VMEbus systems have a
single PC board, called the J1 backplane. It provides the signal
paths needed for basic operation. Other VMEbus systems also
have an optional second PC board, called a J2 backplane. It
provides the additional 96 pin connectors and signal paths
needed for wider data and address transfers. Still others have a
single PC board that provides the signal conductors and
connectors of both the J1 and J2 backplanes.

BACKPLANE
INTERFACE LOGIC

Special interface logic that takes into account the characteristics
of the backplane: its signal line impedance, propagation time,
termination values, etc. The VMEbus specification prescribes
certain rules for the design of this logic based on the maximum
length of the backplane and its maximum number of board slots.

BLOCK READ
CYCLE

A DTB cycle used to transfer a block of 1 to 256 bytes from a
SLAVE to a MASTER. This transfer is done using a string of 1, 2,
or 4 byte data transfers. Once the block transfer is started, the
MASTER does not release the DTB until all of the bytes have
been transferred. It differs from a string of read cycles in that the
MASTER broadcasts only one address and address modifier (at



the beginning of the cycle). Then the SLAVE increments this
address on each transfer so that the data for the next cycle is
retrieved from the next higher location.

BLOCK WRITE
CYCLE

A DTB cycle used to transfer a block of 1 to 256 bytes from a
MASTER to a SLAVE. The block write cycle is very similar to the
block read cycle. It uses a string of 1 , 2 or 4 byte data transfers
and the MASTER does not release the DTB until all of the bytes
have been transferred. It differs from a string of write cycles in that
the MASTER broadcasts only one address and address modifier
(at the beginning of the cycle). Then the SLAVE increments this
address on each transfer so that the next transfer is stored in the
next higher location.

BOARD A printed circuit (PC) board, its collection of electronic
components, and either one or two 96 pin connectors that can be
plugged into VMEbus backplane connectors.

BUS TIMER A functional module that measures how long each data transfer
takes on the DTB and terminates the DTB cycle if a transfer takes
too long. Without this module, if the MASTER tries to transfer data
to or from a non-existent SLAVE location it could wait forever for a
SLAVE to respond. The BUS TIMER prevents this by terminating
the cycle.

D08(O) A SLAVE that sends and receives data 8 bits at a time over
D00-D07, OR an INTERRUPT HANDLER that receives 8 bit
STATUS/ID’s over D00-D07 OR , an INTERRUPTER that sends 8
bit STATUS/ID’s over D00-D07.

D08 (EO) A MASTER that sends or receives data 8 bits at a time over either
D00-D07 or D08-D15, OR a SLAVE that sends and receives data
8 bits at a time over either D00-D07 or  D08-D15.

D16 A MASTER that sends and receives data 16 bits at a time over
D00-D15, OR a SLAVE that sends and receives data 16 bits at a
time over D00-D15, OR an INTERRUPT HANDLER that receives
16 bit STATUS/ID’s over D00-D15, OR an INTERRUPTER that
sends 16 bit STATUS/ID’s over D00-D15.

D32 A MASTER that sends and receives data 32 bits at a time over
D00-D31 , OR a SLAVE that sends and receives data 32 bits at a
time over D00-D31 , OR an INTERRUPT HANDLER that receives
32 bit STATUS/ID’s over D00-D31 , OR an INTERRUPTER that
sends 32 bit STATUS/ID’s over D00-D31.

DAISY-CHAIN A special type of VMEbus signal line that is used to propagate a
signal level from board to board, starting with the first slot and
ending with the last slot. There are four bus grant daisy-chains
and one interrupt acknowledge daisy-chain on the VMEbus.

DATA TRANSFER
BUS

One of the four buses provided by the VMEbus backplane. The
DATA TRANSFER BUS allows MASTERS to direct the transfer of
binary data between themselves and SLAVES. (DATA
TRANSFER BUS is often abbreviated DTB.)



DATA TRANSFER
BUS CYCLE

A sequence of level transitions on the signal lines of the DTB that
result in the transfer of an address or an address and data
between a MASTER and a SLAVE. There are 34 types of data
transfer bus cycles.

DTB An acronym for DATA TRANSFER BUS.
FUNCTIONAL

MODULE
A collection of electronic circuitry that resides on one VMEbus
board and works together to accomplish a task.

IACK DAISY-CHAIN
DRIVER

A functional module which activates the interrupt acknowledge
daisy-chain whenever an INTERRUPT HANDLER acknowledges
an interrupt request. This daisy-chain ensures that only one
INTERRUPTER will respond with its STATUS/ID when more than
one has generated an interrupt request on the same level.

INTERRUPT
ACKNOWLEDGE

CYCLE

A DTB cycle, initiated by an INTERRUPT HANDLER, that reads a
"STATUS/ID" from an INTERRUPTER. An INTERRUPT
HANDLER generates this cycle when it detects an interrupt
request from an INTERRUPTER and it has control of the DTB.

PRIORITY
INTERRUPT BUS

One of the four buses provided by the VMEbus backplane. The
PRIORITY INTERRUPT BUS allows INTERRUPTER modules to
send interrupt requests to INTERRUPT HANDLER modules, and
INTERRUPT HANDLER modules to acknowledge these interrupt
requests.

INTERRUPTER A functional module that generates an interrupt request on the
INTERRUPT BUS and then provides STATUS/ID information
when the INTERRUPT HANDLER requests it.

INTERRUPT
HANDLER

A functional module that detects interrupt requests generated by
INTERRUPTERS and responds to those requests by asking for
STATUS/ID information.

LOCATION
MONITOR

A functional module that monitors data transfers over the DTB in
order to detect accesses to the locations it has been assigned to
watch. When an access occurs to one of these assigned
locations, the LOCATION MONITOR generates an on-board
signal.

MASTER A functional module that initiates DTB cycles in order to transfer
data between itself and a SLAVE module.

POWER MONITOR
MODULE

A functional module that monitors the status of the primary power
source to the VMEbus system and signals when the power has
strayed outside the limits required for reliable system operation.
Since most systems are powered by an AC source, the power
monitor is typically designed to detect drop-out or brown-out
conditions on AC lines.

READ CYCLE A DTB cycle used to transfer 1, 2, 3, or 4 bytes from a SLAVE to a
MASTER. The cycle begins when the MASTER broadcasts an
address and an address modifier. Each SLAVE captures this
address and address modifier, and checks to see if it is to
respond to the cycle. If so, it retrieves the data from its internal
storage, places it on the data bus, and acknowledges the transfer.



Then the MASTER terminates the cycle.
READ - MODIFY -

WRITE CYCLE
A DTB cycle that is used to both read from, and write to, a SLAVE
location without I permitting any other MASTER to access that
location during that cycle. This cycle I is most useful in
multiprocessing systems where certain memory locations are
used I to control access to certain systems resources. (For
example, semaphore locations.)

REQUESTER A functional module that resides on the same board as a
MASTER or INTERRUPT HANDLER and requests use of the
DTB whenever its MASTER or INTERRUPT HANDLER needs it.

SERIAL CLOCK
DRIVER

A functional module that provides a periodic timing signal that
synchronizes operation of the VMSbus. (Although the VMEbus
specification defines a SERIAL CLOCK DRIVER for use with the
VMSbus, and although it reserves two backplane signal lines for
use by that bus, the VMSbus protocol is completely independent
of the VMEbus). A specification for the timing of the signal
generated by the SERIAL CLOCK DRIVER is given in appendix
C.

SLAVE A functional module that detects DTB cycles initiated by a
MASTER and, when those cycles specify its participation,
transfers data between itself and the MASTER.

SLOT A position where a board can be inserted into a VMEbus
backplane. If the VMEbus system has both a J1 and a J2
backplane (or a combination J1/J2 backplane) each slot provides
a pair of 96 pin connectors. If the system has only a J1 backplane,
then each slot provides a single 96 pin connector.

SUBRACK A rigid framework that provides mechanical support for boards
inserted into the backplane, ensuring that the connectors mate
properly and that adjacent boards do not contact each other. It
also guides the cooling airflow through the system, and ensures
that inserted boards do not disengage themselves from the
backplane due to vibration or shock.

SYSTEM CLOCK
DRIVER

A functional module that provides a 16 MHz timing signal on the
UTILITY BUS.

SYSTEM
CONTROLLER

BOARD

A board which resides in slot 1 of a VMEbus backplane and has a
SYSTEM CLOCK DRIVER, a DTB ARBITER an IACK DAISY
CHAIN DRIVER, and a BUS TIMER. Some also have a SERIAL
CLOCK DRIVER, a POWER MONITOR, or both.

UAT A MASTER that sends or receives data in an unaligned fashion,
or a SLAVE that sends and receives data in an unaligned fashion,
OR a SLAVE that sends and receives data in an unaligned
fashion.

UTILITY BUS One of the four buses provided by the VMEbus backplane. This
bus includes signals that provide periodic timing and coordinate
the power-up and power-down of VMEbus systems.

WRITE CYCLE A DTB cycle used to transfer 1,2,3, or 4 bytes from a MASTER to



a SLAVE. The cycle begins when the MASTER broadcasts an
address and address modifier and places data on the DTB. Each
SLAVE captures this address and address modifier, and checks
to see if it is to respond to the cycle. If so, it stores the data and
then acknowledges the transfer. The MASTER then terminates
the cycle.



APPENDIX B

VMEbus CONNECTOR/PIN DESCRIPTION

INTRODUCTION

This appendix describes the VMEbus signal lines. The following table identifies the VMEbus
signals by signal mnemonic, and describes the signal characteristics.

VMEbus Signal Identification

SIGNAL MNEMONIC SIGNAL NAME AND DESCRIPTION
A01-A15 ADDRESS bus (bits 1-15) - Three-state driven address lines

that are used to broadcast a short, standard, or extended
address.

A16-A23 ADDRESS bus (bits 16-23) - Three-state driven address lines
that are used in conjunction with A01-A15 to broadcast a
standard or extended address.

A24-A31 ADDRESS bus (bits 24-31) - Three-state driven address lines
that are used in conjunction with A01-A23 to broadcast an
extended address.

ACFAIL* AC FAILURE - An open-collector driven signal which indicates
that the AC input to the power supply is no longer being
provided or that the required AC input voltage levels are not
being met.

AM0-AM5 ADDRESS MODIFIER (bits 0-5) - Three-state driven lines that
are used to broadcast information such as address size, cycle
type, and/or MASTER identification.

AS* ADDRESS STROBE - A three-state driven signal that
indicates when a valid address has been placed on the
address bus.

BBSY* BUS BUSY - An open-collector driven signal driven low by the
current MASTER to indicate that it is using the bus. When the
MASTER releases this line, the resultant rising edge causes
the ARBITER to sample the bus grant lines and grant the bus
to the highest priority requester.

BCLR* BUS CLEAR - A totem-pole driven signal, generated by an
ARBITER to indicate when there is a higher priority request
for the bus. This signal requests the current MASTER to
release the DTB .

BERR* BUS ERROR - An open-collector driven signal generated by a
SLAVE or BUS TIMER. This signal indicates to the MASTER
that the data transfer was not completed.

BG0IN*-BG3IN* BUS GRANT (0-3)IN - Totem-pole driven signals generated
by the ARBITER and REQUESTERS. “Bus grant in” and “bus
grant out” signals form bus grant daisy chains. The “bus grant
in” signal indicates, to the board receiving it, that it may use



the DTB.
BG0OUT*-BG3OUT* BUS GRANT (0-3) OUT - Totem-pole driven signals

generated by REQUESTERS. The bus grant out signal
indicates to the next board in the daisy-chain that it may use
the DTB.

BR0*-BR3* BUS REQUEST (0-3) - Open-collector driven signals
generated by REQUESTERS. A low level on one of these
lines indicates that some MASTER needs to use the DTB.

D00-D31 DATA BUS - Three-state driven bidirectional data lines used
to transfer data between MASTERS and SLAVES.

DS0*, DS1* DATA STROBE ZERO, ONE - Three-state driven signals
used in conjunction with LWORD* and A01 to indicate how
many data bytes are being transferred (1 , 2, 3, or 4).
During a write cycle, the falling edge of the first data strobe
indicates that valid data is available on the data bus. On a
read cycle, the rising edge of the first data strobe indicates
that data has been accepted from the data bus.

DTACK* DATA TRANSFER ACKNOWLEDGE - An open-collector
driven signal generated by a SLAVE. The falling edge of this
signal indicates that valid data is available on the data bus
during a read cycle, or that data has been accepted from the
data bus during a write cycle. The rising edge indicates when
the SLAVE has released the data bus at the end of a READ
CYCLE.

GND The DC voltage reference for the VMEbus system.
IACK* INTERRUPT ACKNOWLEDGE - An open-collector or three

state driven signal used by an INTERRUPT HANDLER
acknowledging an interrupt request. It is routed, via a
backplane signal trace, to the IACKIN* pin of slot 1 , where it
is monitored by the IACK DAISY-CHAIN DRIVER.

IACKIN* INTERRUPT ACKNOWLEDGE IN - A totem-pole driven
signal. The IACKIN* and IACKOUT* signals form a daisy
chain. The IACKIN* signal indicates to the VMEbus board
receiving it that it is allowed to respond to the INTERRUPT
ACKNOWLEDGE CYCLE that is in progress.

IACKOUT* INTERRUPT ACKNOWLEDGE OUT - A totem-pole driven
signal. The IACKIN* and IACKOUT* signals form a daisy-
chain. The IACKOUT* signal is sent by a board to indicate to
the next board in the daisy-chain that it is allowed to respond
to the INTERRUPT ACKNOWLEDGE CYCLE that is in
progress.

IRQ1*-IRQ7* INTERRUPT REQUEST (1-7) - Open-collector driven signals,
generated by an INTERRUPTER, which carry interrupt
requests. When several lines are monitored by a single
INTERRUPT HANDLER the highest numbered line is given
the highest priority.



LWORD* LONGWORD - A three-state driven signal used in conjunction
with DS0*, DS1*, and A01 to select which byte location(s)
within the 4 byte group are accessed during the data transfer.

RESERVED RESERVED - A signal line reserved for future VMEbus
enhancements. This line MUST NOT be used.

SERCLK SERIAL CLOCK - A totem-pole driven signal which is used to
synchronize the data transmission on the VMSbus.

SERDAT* SERIAL DATA - An open-collector driven signal which is used
for VMSbus data transmission.

SYSCLK SYSTEM CLOCK - A totem-pole driven signal which provides
a constant 16-MHz clock signal that is independent of any
other bus timing.

SYSFAIL* SYSTEM FAIL - An open-collector driven signal that indicates
that a failure has occurred in the system. This signal may be
generated by any board on the VMEbus.



APPENDIX C

USE OF THE SERCLK AND SERDAT* LINES

Two signal lines on the VMEbus backplane (SERCLK and SERDAT*) are designated for use
by the VMSbus and provide a serial communication link between boards. The protocol used on
the VMSbus is outside the scope of this document. Since system controller board designers
will want to include circuitry on their boards to drive SERCLK, this appendix provides the
necessary information.

SERCLK, like SYSCLK has no fixed timing relationship with any VMEbus signal (except
SERDAT* which carries data bits that are synchronized to SERCLK).

The drivers and receivers for SERCLK and SERDAT* are specified in Chapter 7.

Figure C-1 and Table C-1 show the required timing parameters for the SERCLK signal line. A
SERCLK waveform with these timing values can be derived from a 32 MHz clock source. The
timing values in Table C-1 are for use when the SERCLK and SERDAT* lines are not
extended beyond the VMEbus backplane. If these signals are extended to carry intersystem
information, each of the timing values given in Table C-1 should be multiplied by a common
scaling factor, greater than 1, to allow for the increased SERCLK and SERDAT* propagation
times.

RECOMMENDATION C.1:
When designing the SERIAL CLOCK DRIVER module, take into account the fact that the
SERCLK line driver’s propagation delays for the rising and falling edges will likely be different.
This difference is emphasized when the SERCLK line is heavily loaded. When calculating the
driver’s propagation delays, use the delays specified on the manufacturer’s data sheet for a
300 pf capacitive load. If the only propagation delays given are for a 30 pf load, add 1 0 nSec
to each of the propagation delays.

SUGGESTION C.1:
Design the SERIAL CLOCK DRIVER so that it can be jumpered to work from various stages of
a binary counter that is driven by a 32 MHz clock source. This allows the selection of 32 MHz ,
16 MHz , 8 MHz, etc., as the base frequency for the SERIAL CLOCK DRIVER and makes it
easy to select a frequency appropriate for the length of the SERCLK and SERDAT* lines.

OBSERVATION C.1:
If a 32 MHz clock source is used to generate the SERCLK waveform, it can also be used to
generate the VMEbus’s 16 MHz SYSCLK signal.

SUGGESTION C.2:
To allow multiple boards that include SERIAL CLOCK DRIVER to be installed in the same
backplane, design them with a jumper that disconnects the SERIAL CLOCK DRIVER from the
SERCLK line.



Note:
See Table C-1 on the following page for timing values.

Figure C-1. SERCLK Timing Diagram

Table C-1. SERCLK Timing Values

PARAMETER
NUMBER

MIN MAX

1 167
2 194
3 51
4 25
5 74
6 100
7 51
8 25
9 340 347

Note:
All timing values are in nanoseconds.


