OPERATIONS MANUAL
PCM-UIO48A

NOTE: This manual has been designed and created for use as part of the WinSystems’ Technical Manuals
CD and/or the WinSystems’ website. If this manual or any portion of the manual is downloaded, copied or
emailed, the links to additional information (i.e. software, cable drawings) will be inoperable.

WinSystems reserves the right to make changes in the circuitry
and specifications at any time without notice.
OCopyright 1996 by WinSystems. All Rights Reserved.

WinSystems - "The Embedded Systems Authority"

REVISION HISTORY
P/N 403-0255-000

ECO Number Date Code Revision
ORIGINATED 961112 B
97-34 970527 Bl

TABLE OF CONTENTS

Section Paragraph Title Page

Visual Index — Quick Reference i

1 General Information 1-1
11 Features 1-1
1.2 Introduction 1-1
13 Specifications 1-2
2 PCM-UIO48A Technica Reference 2-1
2.1 Introduction 2-1
2.2 [/O Address Selection 2-1
23 Interrupt Routing Selection 2-2
2.4 |/O Connector Pinout 2-3
2.5 PC/104 Bus Interface 2-4
2.6 WS16C48 Register Definitions 2-5
2.7 Connector/Jumper Summary 2-6
3 PCM UIO48A Programming Reference 31
31 Introduction 3-1
3.2 Function Definitions 31
3.3 Sample Programs 35

APPENDIX A 1/0O Routine and Sample Program Source Listings
APPENDIX B Cable Drawings and Software Drivers & Examples

Warranty and Repair Information

Visual Index — Quick Reference

For the convenience of the user, a copy of the Visual Index has been provided with direct
links to connector and jumper configuration data.

J1
Ports3-51/0
Connector

J3
Base /O Address
Selection Jumper

J5
PC/104 8-bit Bus
Connector

Fi Sl
e }o
J1 Nlel
 — - Q0000000000 ~ —
+CL COUOCO0DOVOO00O0 RP2IT)
o0 o o oo 5| oo
o O @] (o] [e3Ne] ca o [o3Ne]
&o o|RP1 oo oo - ol oo
oo |lo el oo oo o|l ©c
oo |o C3 oo o®@ |0l all od
co |o Bl oo o o ol| oo
oo Q [*Re] [e 3Nl RER4 (o] [e2Ne]
=
oo |lo oo oo ([@le|| oo
oo O@RPB [eNe] oo o]l oo
[olNw] \C_)/O Q0o D0oo OO0 00 o [olNw]
oo a O 0000000000 a3 [e3Ne]
[o]Ne) o] 11 =] [e2Ne]
R }
oo o - & o oo
[WinSystemso{__ }-o
o o o o
o o PCM—UI048A Rev. B 01 ol e
Nl 406-0255—000B R2 — B
oo do oo
~ 1993, 1996 o }o Q0f
oo |[@o| Mg in USA lejo|| e o
[s}Ne] o& 2 468 12 18183 c 0T a5 J4 RPE|C [elNs]
©0 |lofpns cooDo0DOO|200c0Co 02 ol oo
oo |lo D000 C0ORIOD0O0Q0 ol oo
oo |o 13 ol O
oo |lo ce f@ccecocoooo) ol oo
o0 o] OODOOOOOOORP7+ o [olNe]
[olNe) e} ofs) o [a] [e e
oo |lo 2 o)l oo
®+ ypgooooaoo0o0o0 o
Moo T000U0DD00000D000DORORO000000DOC |
s 0C0C 000000000000 0000000000000C000 M
D R3 O EEEEEEEEEREEEEEEEEEE ‘\JB
@ R4 ooooooooooooooooooooo‘o @

e

J2
Ports0-21/0
Connector

1

J7
Auxillary Interrupt Routing
Header

J4
Interrupt Routing
Header

J6

Qzé\gp ca

OPERATIONS MANUAL PCM-UIO48A

PC/104 16-bit Bus
Connector

970527

GENERAL INFORMATION

11 FEATURES

48 Digital 1/0 Lines

PC/104 8-bit interface

Each line can serve as an input or an output
Readback capability on all output lines
Programmable polarity event sense on 24 lines
Compatible with standard 1/O racks

+5 Volt only operation

Extended temperature range -40°C to +85°C

1.2 GENERAL DESCRIPTION

The PCM-UIO48A isahighly versatile PC/104 input/output module providing 48 lines of digital
I/O. Itisuniqueinitsability to monitor 24 linesfor both rising and falling digital edgetransitions, latch
them, and then issue an interrupt to the host processor. The application interrupt service routine can
quickly determine, through a series of interrupt identification registers, the exact port(s) and bit(s)
which have transitioned. The PCM-UIO48A utilizesthe WinSystems WS16C48 ASIC High Density
I/O Chip (HDIO). Thefirst 24 linesare capable of fully latched event sensing with the sense polarity be-
ing software programmable. Two 50-pin 1/O connectors allow for easy mating with industry standard
1/O racks.

970527 OPERATIONS MANUAL PCM-UIO48A Page1-1

WinSystems - "The Embedded Systems Authority”
1.3 SPECIFICATIONS

1.3.1 Electrica

Bus Interface : PC/104 8-Bit (Optional -16 model allows access to IRQ8 through IRQ15)

VCC: +5V +/-5% @ 12mA typical with no I/O connections.

I/O Addressing : 12-bit user jumperable base address. Each board uses 16 consecutive ad-
dresses.

1.3.2 Mechanical

Dimensions : 3.8"X3.6"X0.5"

PC Board : FR-4 Epoxy glass with 2 signal layers, 2 power planes, screened component
legend, and plated through holes.

Jumpers : 0.025" square posts on 0.10" centers

Connectors : 50 Pin 0.10" grid RN type IDH-50-LP

1.3.3 Environmental

Operating Temperature: -40°C to +85° C

Non Condensing Humidity : 5% to 95%

Page 1-2 OPERATIONS MANUAL PCM-UIO48A

970527

PCM-UIO48A TECHNICAL REFERENCE

2.1 Introduction

This section of the manual is intended to provide the necessary information regarding configura-
tion, and usage of the PCM-UIO48A. WinSystems maintains a Technical Support Group to help an-
swer questionsregarding configuration, usage, or programming of the board. For answersto questions
not adequately addressed in this manual, contact Technical Support at (817) 274-7553 between 8AM

and 5PM Central Time.

2.2

I/O Address Select Jumper J3

I/0O Address Selection

© -
J1

oo

o000
ocooo0

(cooo0o00000®@

°
o0
oo
°

oo
oo
oo
oo
oo
o0
oo
o0
°

°

0000000
0000@oooo

ooooooooooo

(000000000

©

(c00000000®

000000000000 000000000000DO
000000000000 00O0000000000OQ

(5000000 00®

oy
o

®)
°
°
° Ul
oo o N ® R1
J3 OO[o| WinSystemse{_— 1}
oo o| PCM—UIO48A Rev. B Qi
o| 400—0255-0008 R2 —
2 4 6 810121416 oo [@e| e gl ol Fo 0B,
oo |ole 2468 12 1610 0000|554
O O O OO (0] OO0 = ooooooo‘z‘oooooo‘wz RP
OOO0OO0OOl1IDOOOOOMN
0 0O0O0OOOOO oo |o 73 e
1 3 5 7 9111315 00 o €8 (@ocoocoooo)\@
[oiXe] o OOOOOOOOOORP7+
[elie) o
oa o] F2
ey, CEseeeeeees
M O0O0OO0ODOOOODODOOODODODO0OO0OOO0OD0O0OD0OD0O0OO0O0OD0O0O0OO
| B00000000000000000000000O0O0O00O000O0O0
NS R3 oM@ 0000000000000 0D0O00OOOO0O
@ouooooooooooooooooooo
0260/ CB

(=)
0

The PCM-UIO48A requires 16 consecutive 1/O addresses beginning on a 16 byte boundary. The
jumper block at J3 allowsfor user selection of the base address. Address selectionismade by placing a
jumper onthejumper pair for theaddresshitif a'0' isdesired or leaving theaddressbit openif a'l'isre-
quiredfor thedesired address. Theillustration bel ow showstherel ationship between the addresshbit and
the jumper positions and a sample jumpering for a base address of 200H.

I/O Base Address Select Jumper

J3 shown jumpered for 200H

970527

All
Al10
A9
A8
A7
A6
A5
A4

OPERATIONS MANUAL PCM-UIO48A

Page2-1

WinSystems - "The Embedded Systems Authority”

2.3 Interrupt Routing Selection

-
©

Interrupt routing jumpers J4 and J7

o

o
(cocococoo0o®
(c50000000@® <

or
onN
o w
o+
ou

gg[ZWIHSyS‘(emS@:A:mI—o

oo | [b aemin® o J4

55 (@fo] ©io jgEe = —Jo Aok

H R i 27476 81012

25 (s e 0 00000

oo e D RN Ry 0O 00 0O0O

H :@ 135 7911
J +€) Cumeseeseees

mM[0000000000000D000000O0O000000O0O0O0O
«|B©00000000000D0U000OO000O00000000000

o RS [Off[E0000000000060000000[0

o{ R4 }ogpbooooocooooooo00000o00 @
6of

02608 CB

When desired the PCM-UIO48A can generate an interrupt on up to 24 different lines each withits
own polarity select. Thisinterrupt can berouted to the PC/104 busviathe jumper at J4. 16-bit versions
of the board will also have the auxillary jumper at J7 installed. The interrupt routing header is shown
here along with sample jumpering for IRQ5.

a J7
IRQ7[1 0 oo 1]IRQ15
IRQ6 |3 0 oo 2/IRQ14
IRQ5 |5 Gumd| 0 3|IRQ12
IRQ4 |7 0 o| o 4/IRQ11
IRQ3|9 0 oo 5/IRQ10
IRQ2|110 o

Page 2 - 2 OPERATIONS MANUAL PCM-UIO48A 970527

WinSystems - "The Embedded Systems Authority”

2.4 I/0O Connector Pinout

The PCM-UIO48A routesits48 linesto 50-pin IDC connectorsat J1 and J2. The pin definitionsfor
J1 and J2 are shown here:

P2-7
P2-6
P2-5
P2-4
P2-3
pP2-2
P2-1
P2-0
P1-7
P1-6
P1-5
P1-4
P1-3
P1-2
P1-1
P1-0
PO-7
PO-6
PO-5
PO-4
PO-3
PO-2
PO-1
PO-0

+5V

[
N

O000000O00O0OO0OO0OO0OO0OO0OO0OO0OO0OOOOOOO0OO
[cNeNoNeNeoNoNeoNoNoNoNeoNoNoNoNoNoNoNoNoNoNoNoNoNeoNeo]

GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND

P5-7
P5-6
P5-5
P5-4
P5-3
P5-2
P5-1
P5-0
P4-7
P4-6
P4-5
P4-4
P4-3
P4-2
P4-1
P4-0
P3-7
P3-6
P3-5
P3-4
P3-3
P3-2
P3-1
P3-0

+5V

o
[y

OC00O000000O00OO0OO0OO0OO0OO0OO0OOOOO0O0OO0OO
OC00O000000O0O0OO0O0OO0OO0OO0OO0OO0OOOO0OOO0OO

GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND

NOTE : Pin 49 on each connector can supply +5V to the /O rack. The supply on each connector is

protected from excessive current by a 1A miniature fuse F1 for J1 and F2 for J2.

970527

OPERATIONS MANUAL PCM-UIO48A

Page 2 -3

2.5 PC/104 Bus Interface

WinSystems - "The Embedded Systems Authority”

The PCM-UIO48A connects to the processor through the PC/104 bus connector at J5. The 16-bit
versionsof theboard will aso havethe J6 connector installed. The pin definitionsfor the J5 and J6 con-

nectors are shown here for reference :

GND
RESET
+5V
IRQ9
-5V
DRQ2
-12V
S
+12V
GND
MEMW
MEMR
oW
IOR
DACK3
DRQ3
DACK1
DRQ1
REFRESH
SYSCLK
IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
DACK?2
TC
BALE
+5V
0Ssc
GND
GND

Page 2 -4

J5
Bl o o Al
B2 o o A2
B3 o o A3
B4 o o A4
B5 o o A5
B6 o o A6
B7 o o A7
B8 o o A8
B9 o o A9
B10o o A10
Bllo o All
Bl2o o Al2
B13 o0 o Al3
Bl4o o Al4
Bl150 o Al5
Bl16 o o Al6
Bl1l70 o Al7
B18o o Al8
B190o o Al9
B20o o A20
B21o o A21
B22o0 o A22
B23 o0 o A23
B24 0 o A24
B250 o A25
B26 o o A26
B27 0 o A27
B28o o A28
B29 o0 o A29
B30 o o A30
B31o o A3l
B320 o A32

OPERATIONS MANUAL PCM-UIO48A

IOCHK

BD7
BD6
BD5
BD4
BD3
BD2
BD1
BDO

IOCHRDY

AEN
SA19
SA18
SA17
SA16
SA15
SA14
SA13
SA12
SA11
SA10
SA9
SAS8
SA7
SA6
SA5
SA4
SA3
SA2
SAl
SAO0
GND

GND
SBHE
LA23
LA22
LA21
LA20
LA19
LA18
LAL17

MEMR
MEMW

SD8
SD9
SD10
SD11
SD12
SD13
SD14
SD15
KEY

J6
CO0 o o DO
Cl o o D1
C2 o o D2
C3 o o D3
C4 o o D4
C5 o o D5
C6 o o D6
C7 o o D7
C8 o o D8
C9 o o D9
C10 o o D10
Cl1 o o D11
Cl12 o o D12
C13 o o D13
Cl14 o o D14
C15 o o D15
Cl16 o o D16
Cl17 o o D17
C18 o o D18
C19 o o D19

GND
MEMCS16
IOCS16
IRQ10
IRQ11
IRQ12
IRQ15
IRQ14
DACKO
DRQO
DACK5
DRQ5
DACK6
DRQ6
DACK7
DRQ7
vCcC
MASTER
GND
GND

970527

2.6

WinSystems - "The Embedded Systems Authority”

WS16C48 Register Definitions

The PCM-UIO48A usesthe WinSystems' exclusive ASIC device, the WS16C48. Thisdevicepro-
vides 48 lines of digital I/O. There are 17 unique registers within the WS16C48. The following table
summarizes the registers and the text that follows provides details on each of the internal registers.

I/Oc,)Af?Sdertess Page O Page 1 Page 2 Page 3
OOH Port 0 1/0 Port 0 1/0 Port 0 1/0 Port 0 1/10
O1H Port 1 1/0 Port 1 1/0 Port 1 1/0 Port 1 1/0
02H Port 2 1/10 Port 2 1/10 Port 2 1/10 Port 2 1/10
O3H Port 31/0 Port 31/0 Port 31/0 Port 31/0
04H Port 4 1/0 Port 4 1/0 Port 4 1/0 Port 4 1/10
O5H Port 5 1/10 Port 5 1/0 Port 5 1/10 Port 5 1/10
06H INT PENDING | INT PENDING | INT PENDING | INT PENDING
O7H Page/Lock Page/Lock Page/Lock Page/Lock
08H N/A POL O ENAB 0O INT _I1DO
09H N/A POL 1 ENAB 1 INT ID1
0OAH N/A POL 2 ENAB 2 INT I1D2

Register Details

Port0-5 1/0 - Each1/O bit in each of these 6 portscan beindividually programmed for input or out-
put. Writing a'0' to abit position causes the corresponding output pin to go to aHigh- Impedance state
(pulled high by external 10K ohmresistors). Thisallowsit to beused asaninput. Whenused intheinput
mode, aread reflectsthe inverted state of the 1/0O pin, such that ahigh onthe pinwill read asa'0’ inthe
register. Writing a'1' to a bit position causes the output pin to sink current (up to 12mA), effectively
pulling it low.

INT_PENDING - This read only register reflects the combined state of the INT_IDO through
INT_ID2 registers. When any of the lower 3 bitsare set, it indicates that an interrupt is pending on the
I/O port corresponding to the bit position(s) that are set. Reading thisregister allows an Interrupt Serv-
ice Routineto quickly determineif any interruptsare pending and which 1/O port hasan interrupt pend-

ing.

PAGE/LOCK - Thisregister servestwo purposes. Theupper two bitssel ect theregister pagein use
as shown here:

D7 D6 Page

Page 0
Page 1
Page 2
Page 3

kL, OO
R ORFrOoO

970527 OPERATIONS MANUAL PCM-UIO48A Page 2 - 5

WinSystems - "The Embedded Systems Authority”

Bits5-0 allow for locking of the /O ports. A '1' written to the I/O port position will prohibit further
writes to the corresponding /O port.

POLO - POL3 - Theseregistersare accessible when page 1 is selected. They alow interrupt polar-
ity selection on aport-by-port and bit-by-bit basis. Writing a'1' to a bit position selectsrising edge de-
tection interrupts while writing a'0' to a bit position selects falling edge detection interrupts.

ENABO - ENAB3 - Theseregistersare accessible when page 2 is selected. They allow for port-by-
port and bit-by-bit enabling of the edge detection interrupts. When set to a'l' the edge detection inter-
rupt isenabled for the corresponding port and bit. When cleared to a'0' the bit's edge detection interrupt
isdisabled. Notethat thisregister can be used toindividually clear apending interrupt by disabling and
reenabling the pending interrupt.

INT_IDO - INT_ID2 - These registers are accessible when page 3 is selected. They are used to
identify currently pending edge interrupts. A bit whenread asa'l' indicatesthat an edge of the polarity
programmed into the corresponding polarity register has been recognized. Notethat awriteto thisreg-
ister (value ignored) clears ALL of the pending interruptsin this register.

2.7 Connector/Jumper Summary

Connector/ Purpose Page Reference
Jumper

J1 Ports 3-5 1/0O connector 2-3

J2 Ports 0-2 1/0O connector 2-3

J3 Base 1/0O Address select jumper 2-1

J4 Interrupt routing header 2-2

J5 PC/104-8 bus connector 2-4

J6 PC/104-16 bus connector 2-4

J7 Auxillary interrupt routing header 2-2

Page 2 - 6 OPERATIONS MANUAL PCM-UIO48A 970527

PCM-UIO48A Programming Reference

3.1 Introduction

This section provides basic documentation for theincluded I/O routines. It isintended that the ac-
companying source code equip the programmer with a basic library of 1/O functions for the PCM-
UIO48A or can serve as the basis from which application-specific code can be derived.

The sample /O routines and sample programs were compiled and tested using the Borland C/C++

compiler Version 3.1. The routines should readily port to any compiler supporting basic port 1/0 in-
structions.

3.2 Function Definitions

This section briefly describes each of the functions contained in the driver. Where necessary, short
exampleswill beprovidedtoillustrate usage. Any application making use of any of thedriver functions

should include the header file “uio48.h”, which includes the function prototypes and the needed con-
stant definitions.

Note that all of the functions utilize the concept of a“bit_number”. The “bit_number” isavalue
from 1to048 (1to 24 for interrupt related functions) that correlatesto aspecific /O pin. Bit_number 1is
port O bit 0, and continues though to bit_number 48 at port 5 bit 7.

INIT 10 - Initialize 1/O, set all ports to input

Syntax

void init_io(unsigned io_address);
Description

This function takes a single argument :

io_address - the I/O address of the WS16C48 chip.

Thereisno returnvalue. Thisfunctioninitializesall 1/0 pinsfor input (setsthem high), disablesal
interrupt sensing, and sets the image values.

970527 OPERATIONS MANUAL PCM-UIO48A Page 3-1

WinSystems - "The Embedded Systems Authority"

READ BIT - Reads an I/O port Bit
Syntax

int read_bit(int bit_numbery);

Description

This function takes a single argument :

bit_number - This is a value from 1 to 48 that indicates the 1/O pin to read from.

Thisfunction returnsthe state of thel/O pin. A '1'isreturnedif thel/O pinislow and a'0' isreturned
if the pinishigh.

WRITE BIT - Write a1 or 0 to an I/O pin

Syntax

void write_bit(int bit_number, int value);

Description

This function takes two arguments

bit_number - This is a value from 1 to 48, which is the bit to be acted upon.

value - is either 1 orO.

Thisfunction allowsfor thewriting of asinglebit to either a'0' or a'1' as specified by the second ar-
gument. Thereis no return value and other bitsin the I/O port are not affected.

SET BIT - Set the specified /O Bit
Syntax

void set_bit(int bit_numbery);
Description
This function takes a single argument :

bit_number - a value between 1 and 48 specifying the port bit to set.

Thisfunction setsthe specified I/O port bit. Note that setting abit resultsinthe I/O pin actually go-
ing low. Thereis no return value and other bitsin the same 1/0O port are unaffected.

Page 3 -2 OPERATIONS MANUAL PCM-UIO48A 970527

WinSystems - "The Embedded Systems Authority”

CLR BIT - Clear the specified I/O Bit
Syntax

void clr_bit(int bit_number);

Description

This function takes a single argument :

bit number - This value from 1 to 48 indicates the bit number to clear.

Thisfunction clearsthe specified 1/0 bit. Note that clearing the I/O bit resultsin the actual 1/0 pin
going high. This function does not affect any bits other than the one specified.

ENAB INT - Enable Edge Interrupt, select polarity

Syntax

void enab_int(int bit_number, int polarity);

Description

This function requires two arguments

bit_number - A value from 1 to 24 specifying the appropriate bit.

polarity - Specifies rising or falling edge polarity detect. The constants RISING and FALLING are de-
fined

in “uio48.h”
This function enables the edge detection circuitry for the specified bit at the specified polarity. It

does not unmask the interrupt controller, install vectors, or handleinterrupts when they occur. Thereis
no return value and only the specified bit is affected.

970527 OPERATIONS MANUAL PCM-UIO48A Page 3 -3

WinSystems - "The Embedded Systems Authority"

DISAB INT - Disable Edge Detect Interrupt Detection
Syntax

void disab_int(int bit_number);

Description

This function requires asingle argument “

bit_ number - A value from 1 to 24 specifying the appropriate bit.

Thisfunction shutsdown the edge detection interruptsfor the specified bit. Thereisnoreturnvaue

and no harm is done by calling this function for a bit which did not have edge detection interrupts en-
abled. There is no affect on any other bits.

CLR_INT - Clear the specified pending interrupt

Syntax

void clr_int(bit_number);

Description

This function requires asingle argument :

bit_number - The specified the bit number from 1 to 24 to reset the interrupt.

Thisfunction clearsapending interrupt on the specified bit. It doesthisby disabling and re-enabling
theinterrupt. The net result after the call isthat theinterrupt isno longer pending and isrearmed for the
next transition of the same polarity. Calling thisfunction onabit that has not been enabled for interrupts
will result initsinterrupt being enabled with an undefined polarity. Calling thisfunction with no inter-
rupt currently pending will have no adverse affect. Only the specified bit is affected.

GET INT - Retrieve bit number of pending interrupt

Syntax

int get_int(void);

Description

Thisfunction requires no arguments and returns either a'0' for no bit interrupts pending or avalue
between 1 and 24 representing abit number that hasapending edge detect interrupt. Theroutinereturns

with thefirst interrupt found and beginsits search at port O bit O proceeding throughto port 2 bit 7. Itis
necessary to use either clr_int() or disab_int() to avoid returning the same bit number continuously.

Page 3 -4 OPERATIONS MANUAL PCM-UIO48A 970527

WinSystems - "The Embedded Systems Authority”

Thisfunction may either be used in an application's | SR or can be used in the foreground to poll for bit
transitions.

3.3 SAMPLE PROGRAMS

There are three sample programs in source code form included on the PCM-UIO48A diskette.
Theseprogramsarenot useful by themselvesbut are provided toillustrate the usage of thel/O functions
provided in UIO48.C.

FLASH.C
This program was compiled with Borland C/C++ version 3.1 on the command line with :

bcc flash.c uio48.c

This program illustrates the most basic usage of the PCM-UIO48A board. It uses three functions
from the driver code. Theinit_io() functionisused to initialize the 1/O functions and the set_bit() and
clr_bit() functions are used to sequence through all 48 bits turning each on and then off in turn.

POLL.C
This program was compiled with Borland C/C++ version 3.1 on the command line with :

bcc poll.c uio48.c

This program illustrates additional features of the WS16C48 and the 1/0 library functions. It pro-
grams the first 24 bits for input, arms them for falling edge detection and then polls the 1/0 routine
get_int() to determine if any transitions have taken place.

INT.C

This program was compiled and with Borland C/C++ version 3.1 on the command line with :

bcc int.c uio48.c

Thisprogramisidentical infunctiontothe”poll.c” program except that interruptsare activeand all
updating of the transition countersis accomplished in the background during the interrupt service rou-
tine.

Summary
Thesourcecodefor al three sampleprogramsaswell asthel/O routinesareincluded on the accom-

panying diskette. The source codeisalso provided in printed form in Appendix C. These I/O routines
along with the sampl e programs should provide agood basis on which to build an application utilizing
the features of the PCM-UIO48A.

970527 OPERATIONS MANUAL PCM-UIO48A Page 3-5

APPENDIX A

I/0O Routine & Sample Program Source Listings

/* U O48. H

*/

Copyright 1996 by WnSystens Inc.

Perm ssion is hereby granted to the purchaser of the WnSystens

U O cards and CPU products incorporating the U O device, to distribute
any binary file or files conpiled using this source code directly or
in any work derived by the user fromthis file. In no case nay the
source code, original or derived fromthis file, be distributed to any
third party except by explicit perm ssion of WnSystens. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or inplied.

In no case shall WnSystens be liable for any direct or indirect |oss
or damage, real or consequential resulting fromthe usage of this
source code. It is the user's sole responsibility to determ ne
fitness for any considered purpose.

[Rrkk Rk ok ok ok kkkk kK kkkkkkkk ok kK kkkkkkk ko kK kk ok ok kkk ok kkkkkkkkkhkkkkkkkkkkkk kK ko

*

T

*

Narre © ui048.h

Project : PCM U 048 Software Sanpl es/ Exanpl es
Dat e . Cctober 30, 1996

Revi sion: 1.00

Aut hor : Steve Mdttin

R]

Changes :
Dat e Revi si on Description
10/ 30/ 96 1.00 O eat ed

R

*/

#define RISING 1
#define FALLI NG O

voi d init_io(unsigned io_address);

int

voi d
voi d
voi d
voi d
voi d
voi d

read_bit(int bit_nunber);
wite_bit(int bit_nunber);
set_bit(int bit_nunber);
clr_bit(int bit_nunber);
enab_int(int bit_nunmber, int polarity);
disab_int(int bit_nunber);
clr_int(int bit_nunber);

int get_int(void);

/* U o48.C
Copyright 1996 by WnSystens Inc.

Perm ssion is hereby granted to the purchaser of the WnSystens
U O cards and CPU products incorporating the U O device, to distribute
any binary file or files conpiled using this source code directly or
in any work derived by the user fromthis file. In no case nay the
source code, original or derived fromthis file, be distributed to any
third party except by explicit perm ssion of WnSystens. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or inplied.
In no case shall WnSystens be liable for any direct or indirect |oss
or damage, real or consequential resulting fromthe usage of this
source code. It is the user's sole responsibility to determ ne
fitness for any considered purpose.

*

/i***

* Nane : uio48.c

*
: Project : PCM U 048 Software Sanpl es/ Exanpl es

: Dat e . Cctober 30, 1996

: Revi sion: 1.00

* Aut hor : Steve Mttin

*

: Changes :

: Dat e Revi si on Descri ption

* 10/ 30/ 96 1. 00 Creat ed

*
R

*/

#i ncl ude <dos. h>

/* This global holds the base address of the U O chip */

unsi gned base_port;

/* This global array holds the inmage values of the last wite to each 1/0O
ports. This allows bit manipulation routines to work without having to
actually do a read-nodify-wite to the 1/0 port.

*/

unsi gned port _i nages[6] ;

/*

* INNT_IO

*

* This function take a single argunent

*

*

* jo_address : This is the base |/0O address of the 16C48 U O Chip

* on the board.

*

*

* This function initializes all 1/Opins for input, disables all interrupt
* sensing, and sets the inage val ues.

*

* */
voi d init_io(unsigned i o_address)

{

int x;

/* Save the specified address for |later use */
base_port = io_address;
/* Clear all of the /O ports. This al so nakes theminputs */

for(x=0; x < 7; x++)
out port b(base_port+x, 0);

/* Clear our image values as well */

for(x=0; x < 6; x++)
port_i mages[x] = O;

/* Set page 2 access, for interrupt enables */
out por t b(base_port +7, 0x80) ;

/* Clear all interrupt enables */

out port b(base_port +8, 0) ;

out port b(base_port +9, 0) ;

out por t b(base_port +0x0a, 0) ;

/* Restore normal page O register access */
out port b(base_port +7, 0);

-

*

READ BI T
This function takes a single argunent
bi t _nunber : The integer argument specifies the bit nunber to read.
Valid argunents are from1l to 48.

return value : The current state of the specified bit, 1 or O.

This function returns the state of the current /O pin specified by
the argurent bit_nunber.

B S T N R

*/
int read_bit(int bit_nunber)

unsi gned port;
int val;

/* Adjust the bit_nunber to 0 to 47 nunbering */

--bi t _nunber;

/* Calculate the 1/O port address based on the updated bit_nunber */
port = (bit_nunmber / 8) + base_port;

/* Get the current contents of the port */

val = inportb(port);

/* Get just the bit we specified */

val = val & (1 << (bit_nunber %38));

/* Adjust the return for a 0 or 1 value */

if(val)
return 1;

return O;
}
/*
*
* WRITE BI T
*
* This function takes two argunents :
*
*
* bit_nunber : The I/Opin to access is specified by bit_nunber 1 to 48.
*
* val The setting for the specified bit, either 1 or O.
*
* This function sets the specified |/Opin to either high or Iow as dictated
* by the val argunment. A non zero value for val sets the bit.
*
*

*/

void wite_bit(int bit_nunber, int val)
unsi gned port;
unsi gned tenp;
unsi gned nask;
/* Adjust bit_nunber for 0 based nunbering */
--bi t _nunber;
/* Calculate the 1/0O address of the port based on the bit nunber */
port = (bit_nunmber / 8) + base_port;
/* Use the inage value to avoid having to read the port first. */
tenp = port_images[bit_nunmber / 8];/* Get current val ue */
/* Calculate a bit mask for the specified bit */
mask = (1 << (bit_nunber %8));
/* Check whether the request was to set or clear and nask accordingly */
if(val) /* If the bit is to be set */
tenp = tenp | mask;
el se
tenp = tenp & ~mask;
/* Update the image value with the value we're about to wite */

port_i mages[bit_nunber / 8] = tenp;

/* Now actually update the port. Only the specified bit is affected */

out portb(port,tenp);

}
/*
* SET_BI T
*
*
* This function takes a single argunent
*
* bit_nunber : The bit nunber to set.
*
* This function sets the specified bit.
*
* */
voi d set_bit(int bit_nunber)
write_bit(bit_nunber,1);
}
/*
* CLRBIT
*
*
* This function takes a single argunent
*
* bit_nunber : The bit nunber to clear.
*
* This function clears the specified bit.
*
* */
void clr_bit(int bit_nunber)
{
write_bit(bit_nunber,0);
}
/*
*
* ENAB_| NT
*
* This function takes two argunents :
*
* bit_nunber : The bit nunber to enable intterups for. Range from1 to 48.
*
* polarity : This specifies the polarity of the interrupt. A non-zero
* argunent enabl es rising-edge interrupt. A zero argunent
* enables the interrupt on the flling edge.
*
* This function enables within the 16C48 an interrupt for the specified bit
* at the specified polarity. This function does not setup the interrupt
* controller, nor does it supply an interrupr handler.
*
* */

voi d enab_int(int bit_nunber, int polarity)
unsi gned port;
unsi gned tenp;
unsi gned nask;
/* Adjust for 0 based nunbering */
--bi t _nunber;
/* Calculate the 1/0O address based uppon the bit nunber */
port = (bit_nunber / 8) + base_port + 8;
/* Calculate a bit mask based on the specified bit nunber */
mask = (1 << (bit_nunber %8));
/* Turn on page 2 access */
out por t b(base_port +7, 0x80) ;
/* Get the current state of the interrupt enable register */
tenp = inportb(port);
/* Set the enable bit for our bit nunber */
tenp = tenp | mask;
/* Now update the interrupt enable register */
out portb(port,tenp);
/* Turn on access to page 1 for polarity control */
out por t b(base_port +7, 0x40) ;

/* Get the current state of the polarity register */

tenp = inportb(port); /* Get current polarity settings */
/* Set the polarity according to the argunent in the inage val ue */

if(polarity) /* If the bit is to be set */
tenp = tenp | mask;

el se
tenp = tenp & ~mask;

/* Wite out the new polarity value */
out portb(port,tenp);
/* Set access back to Page 0 */

out por t b(base_port +7, 0x0) ;

}

/*

*

* DI SAB_| NT

*

* This function takes a single argunent

*

* bit_nunber : Specifies the bit nunber to act upon. Range is from1l to 48.
*

* This function shuts off the interrupt enabled for the specified bit.
*

*

*/

voi d disab_int(int bit_nunber)
unsi gned port;
unsi gned tenp;
unsi gned nask;
/* Adjust the bit_nunber for O based nunbering */
--bi t _nunber;
/* Calculate the 1/O Address for the enable port */
port = (bit_nunber / 8) + base_port + 8;
/* Calculate the proper bit mask for this bit nunber */
mask = (1 << (bit_nunber %8));
/* Turn on access to page 2 registers */
out por t b(base_port +7, 0x80) ;
/* Get the current state of the enable register */
tenp = inportb(port);
/* Clear the enable bit int the image for our bit nunber */
tenp = tenp & ~mask;
/* Update the enable register with the new infornmation */
out portb(port,tenp);
/* Set access back to page 0 */

out por t b(base_port +7, 0x0) ;

}

/*

*

* CLR_INT

*

* This function takes a single argunent

*

* bit_nunber : This argument specifies the bit interrupt to clear. Range
* is 1to 24.

*

*

* This function is use to clear a bit interrupt once it has been recogni zed.
* The interrupt |left enabled.

*

*

*/

void clr_int(int bit_nunber)
unsi gned port;
unsi gned tenp;
unsi gned nask;

/* Adjust for 0 based nunbering */

--bi t _nunber;

/* Calculate the correct I/O address for our enable register */
port = (bit_nunber / 8) + base_port + 8;

/* Calculate a bit mask for this bit nunber */

mask = (1 << (bit_nunber %8));

/* Set access to page 2 for the enable register */

out por t b(base_port +7, 0x80) ;

/* Get current state of the enable register */

tenp = inportb(port);

/* Tenporarily clear only OUR enable. This clears the interrupt */
tenp = tenp & ~mask; /* clear the enable for this bit */
/* Wite out the tenporary val ue */

out portb(port,tenp);

/* Re-enable our interrupt bit */

tenp = tenp | mask;

/* Wite it out */

out portb(port,tenp);

/* Set access back to page 0 */

out por t b(base_port +7, 0x0) ;

}

/*

*

* GET_INT

*

* This function take no argunents.

*

* return value : The value returned is the highest level bit interrupt

* currently pending. Range is 1 to 24.

*

* This function returns the highest level interrupt pending. If no interrupt
* is pending, a zero is returned. This function does NOT clear the interrupt.
*

*

>/

int get_int(void)

{
int tenp;
int x;

/* read the nmaster interrupt pending register, mask off undefined bits */
tenp = inportb(base_port+6) & 0x07;
/* If there are no interrupts pending, return a 0 */

if((tenp & 7) == 0)
return(0);

/* There is something pending, now we need to identify what it is */

/* Set access to page 3 for interrupt id registers */
out por t b(base_port +7, 0xcO) ;
/* Read interrupt ID register for port 0 */

tenp = inportb(base_port+8);

/* See if any bit set, if so return the bit nunber */

if(temp !=0)
{ for(x=0; x <=7; x++)
{ if(temp & (1 << x))
{ out portb(base_port+7,0); /* Turn off access */
return(x+1); /* Return bitnunber with active int */
) }

}

/* None in Port O, read port 1 interrupt ID register */
tenp = inportb(base_port+9);

/* See if any bit set, if so return the bit nunber */

if(temp !=0)
{ for(x=0; x <=7; x++)
if(temp & (1 << x))
{ out portb(base_port+7,0); /* Turn off access */

return(x+9); /* Return bitnunber with active int */

}
/* Lastly, read status of port 2 int id */
tenp = inportb(base_port+0x0a); /* Read port 2 status */
/* If any pending, return the appropriate bit nunber */
if(temp !=0)
{ for(x=0; x <=7; x++)

i{f(tenp & (1 << X))

out portb(base_port+7,0); /* Turn off access */

return(x+17); /* Return bitnunber with active int */
}
}

}
/* W shoul d never get here unless the hardware is ni sbehaving but just

to be sure. W'll turn the page access back to 0 and return a 0 for

no interrupt found.
*/

out port b(base_port +7, 0) ;
return O;

/* FLASH.C
Copyright 1996 by WnSystens |Inc

Perm ssion is hereby granted to the purchaser of the WnSystens
U O cards and CPU products incorporating the U O device, to distribute
any binary file or files conpiled using this source code directly or
in any work derived by the user fromthis file. In no case nay the
source code, original or derived fromthis file, be distributed to any
third party except by explicit perm ssion of WnSystens. This file is
distributed on an "As-is" basis and no warranty as to performance
fitness of purposes, or any other warranty is expressed or inplied
In no case shall WnSystens be liable for any direct or indirect |oss
or damage, real or consequential resulting fromthe usage of this
source code. It is the user's sole responsibility to determ ne
fitness for any considered purpose

*/

#i ncl ude <stdio. h>

#i ncl ude <coni o. h>

#i ncl ude <dos. h>

#i ncl ude "ui 048. h"

/* This is where we have our board junpered to */

#def i ne BASE_PORT 0x200

/* This is an utlra-sinple denonstration program of sone of the functions
available in the U O48 source code library. This programsinply sets and
clears each I/O1line in succession. It was tested by hooking LEDs to al
of the /O lines and wathching the lit one race through the bits

*/

voi d nai n()

int x

/* Initialize all 1/Obits, and set then for input */

i nit_i o(BASE_PORT);

/* W'l repeat our sequencing until a key is pressed */
?hile(!kbhit())

/* W will light the LED attached to each of the 48 lines */
for(x=1; x <=48; x++)

/* Setting the bit lights the LED */

set _bit(x);

/* The wait time is subjective. W |liked 100nS */
del ay(100) ;

/* Now turn off the LED */

clr_bit(x);

}
getch();

/* POLL.C
Copyright 1996 by WnSystens Inc.

Perm ssion is hereby granted to the purchaser of the WnSystens

U O cards and CPU products incorporating the U O device, to distribute
any binary file or files conpiled using this source code directly or
in any work derived by the user fromthis file. In no case nay the
source code, original or derived fromthis file, be distributed to any
third party except by explicit perm ssion of WnSystens. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or inplied.

In no case shall WnSystens be liable for any direct or indirect |oss
or damage, real or consequential resulting fromthe usage of this
source code. It is the user's sole responsibility to determ ne

fitness for any considered purpose.

*/

#i ncl ude <stdio. h>

#i ncl ude <coni o. h>

#i ncl ude "ui 048. h"

#def i ne BASE_PORT 0x200

/* This program uses the edge detection interrupt capability of the
W516CA48 to count transitions on the first 24 lines. It does this
however, no by using true interrupts but by polling for transitions
using the get_int() function

*/

/* Qur transition totals are stored in this array */

unsi gned i nt_counts[25];
/* Definitions for local functions */
voi d check_i nts(void);

voi d nai n()

int x;
/* Initialize the 1/Oports. Set all 1/Opins to input */
i nit_i o(BASE_PORT);
/* Initialize our transition counts, and enable falling edge
transition interrupts.
*/
for(x=1; x<25; x++)
int_counts[x] = 0; /* Clear the counts */
enab_i nt (x, FALLI NG ; /* Enable the falling edge interrupts */
}
/* Clean up the screen for our display. Nothing fancy */
clrscr();
for(x=1; x<25; x++)
{
got oxy(1, x);
printf("Bit nunber 9%92d ", x);
}
/* W& will continue to display until any key is pressed */
whi | e(! kbhit())
{
/* Retrieve any pending transitions and update the counts */
check_ints();
/* Display the current count val ues */
for(x=1; x < 25; x++)
{
got oxy(16, X) ;
printf("9®5u",int_counts[x]);
}
}
getch();
}

voi d check_i nts()

int current;

/* Get the bit nunber of a pending transition interrupt
current = get_int();
/* If it's O there are none pending */

if(current == 0)
return;

/* Clear and rearmthis one so we can get it again */
clr_int(current);
/* Tally a transition for this bit */

++i nt _counts[current];

*/

/* INTS.C
Copyright 1996 by WnSystens |Inc
Perm ssion is hereby granted to the purchaser of the WnSystens
U O cards and CPU products incorporating the U O device, to distribute
any binary file or files conpiled using this source code directly or
in any work derived by the user fromthis file. In no case nay the
source code, original or derived fromthis file, be distributed to any
third party except by explicit perm ssion of WnSystens. This file is
distributed on an "As-is" basis and no warranty as to performance
fitness of purposes, or any other warranty is expressed or inplied
In no case shall WnSystens be liable for any direct or indirect |oss
or damage, real or consequential resulting fromthe usage of this
source code. It is the user's sole responsibility to determ ne
fitness for any considered purpose
*/
#i ncl ude <stdio. h>
#i ncl ude <dos. h>
#i ncl ude <coni o. h>
#i ncl ude "ui 048. h"
#def i ne BASE_PORT 0x200
/* This programlike the poll.c sanple uses the edge detection interrupt
capability of the WB16C48 to count edge transitions. Unlike poll.c,
however this programactually uses interrupts and update all of the
transition counters in the background

*/

/* Qur transition totals are stored in this global array */

unsi gned i nt_counts[25];

/* Function declarations for |ocal functions */

voi d check_i nts(void)

voi d interrupt int_handl er(void)

void interrupt (*ol d_handl er)(void)

voi d nai n()

int x
/* Initialize the 1/O ports. Set all I/Opins to input */
i nit_i o(BASE_PORT);

/* Install an interrupt handler for the board */

/* We disable interrupts whenever we're changing the environnent */
di sabl e(); /* Disable interrupts during initialization */
/* Get the old handler and save it for later resoration */
ol d_handl er = getvect (0x0d); /* Hardwired for IRQG */
/* Install out new interrupt handler */
set vect (0x0d, i nt _handl er)

/* Clear the transition count values and enable the falling edge

interrupts
*/
for(x=1; x<25; x++)
{
int_counts[x] = 0; /* Clear the counts */
enab_i nt (x, FALLI NG ; /* Enable the falling edge interrupts */
}

/* Unmask the interrupt controller */

out port b(0x21, (i nportb(0x21) & 0Oxdf)); /* Unmask 1RQ 5 */
/* Reenable interrupts */

enabl e();

/* Set up the display */

clrscr(); /* Clear the Text Screen */

for(x=1; x<25; x++)

got oxy(1, x);
printf("Bit Nunber 9%92d ", x);

/* W& will continuously print the transition totals until a

key is pressed */

/* Al of the processing of the transition interrupts, including
updating the counts is done in the background when an interrupt
occurs.

*/

whi | e(! kbhit())

for(x=1; x < 25; x++)

{
got oxy(16, X) ;
printf("9®5u",int_counts[x]);

}

getch();

/* Disable interrupts while we restore things */

di sabl e();

/* Mask off the interrupt at the interrupt controller */

out port b(0x21, i nportb(0x21) | 0x20); /* Mask IRQ5 */

/* Restore the old handler */

set vect (0x0d, ol d_handl er); /* Put back the old interrupt handler */

/* Reenabl e interrupts. Things are back they way they were before we
started.

*/

enabl e();

/* This function is executed when an edge detection interrupt occurs */
voi d interrupt int_handl er(void)
int current;

/* Get the current interrupt pending. There really should be one
here or we shouldn't even be executing this function.

*/
current = get_int();
/* W& will continue processing pending edge detect interrupts until
. there are no nore present. In which case current ==
whil e(current)
{
/* Clear the current one so that it's ready for the next edge */
clr_int(current);
/* Tally up one for the current bit nunber */
++i nt _counts[current];
/* Get the next one, if any others pending */
) current = get_int();

/* lssue a non-specific end of interrupt command (EQ) to the
interrupt controller. This rearns it for the next shot.
*/

out por t b(0x20, 0x20) ; /* Do non-specific EQ */

APPENDIX B

Cable Drawings

CBL-115-4 4 ft., 50 conductor ribbon cable with edge connector on one end
CBL-129-4 | 4 ft., 50 conductor ribbon cable with 0.10" socket connection on both ends

Software Examples

Example C functions UIO48A.ZIP
Linux Driver linux_uio48 96.zip

.« STD By,

- e
sk WinSystems

Telephone: 817-274-7553 . . Fax: 817-548-1358
http://www.winsystems.com . . E-mail: info@winsystems.com

WARRANTY

WinSystems warrants that for a period of two (2) years from the date of shipment any Products and Software
purchased or licensed hereunder which have been developed or manufactured by WinSystems shall be free of any
material defects and shall perform substantially in accordance with WinSystems' specifications therefore. With
respect to any Products or Software purchased or licensed hereunder which have been developed or manufactured
by others, WinSystems shall transfer and assign to Customer any warranty of such manufacturer or developer held
by WinSystems, provided that the warranty, if any, may be assigned. The sole obligation of WinSystems for any
breach of warranty contained herein shall be, at its option, either (i) to repair or replace at its expense any materially
defective Products or Software, or (ii) to take back such Products and Software and refund the Customer the
purchase price and any license fees paid for the same. Customer shall pay al freight, duty, broker's fees, insurance
changes and other fees and charges for the return of any Products or Software to WinSystems under this warranty.
WinSystems shall pay freight and insurance charges for any repaired or replaced Products or Software thereafter
delivered to Customer within the United States. All fees and costs for shipment outside of the United States shall be
paid by Customer. The foregoing warranty shall not apply to any Products or Software which have been subject to
abuse, misuse, vandalism, accidents, alteration, neglect, unauthorized repair or improper installations.

THERE ARE NO WARRANTIES BY WINSYSTEMS EXCEPT AS STATED HEREIN. THERE ARE NO
OTHER WARRANTIES EXPRESSOR IMPLIED INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, IN NO
EVENT SHALL WINSYSTEMS BE LIABLE FOR CONSEQUENTIAL, INCIDENTAL, OR SPECIAL
DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF DATA, PROFITS OR
GOODWILL. WINSYSTEMS MAXIMUM LIABILITY FOR ANY BREACH OF THISAGREEMENT OR
OTHER CLAIM RELATED TO ANY PRODUCTS, SOFTWARE, OR THE SUBJECT MATTER
HEREOF, SHALL NOT EXCEED THE PURCHASE PRICE OR LICENSE FEE PAID BY CUSTOMER
TO WINSYSTEMS FOR THE PRODUCTS OR SOFTWARE OR PORTION THEREOF TO WHICH
SUCH BREACH OR CLAIM PERTAINS.

WARRANTY SERVICE

All products returned to WinSystems must be assigned a Return Material Authorization (RMA) number. To obtain
this number, please call or FAX WinSystems factory in Arlington, Texas and provide the following information:

1. Description and quantity of the product(s) to be returned including its serial humber.

2. Reason for the return.

3. Invoice number and date of purchase (if available), and original purchase order number.

4. Name, address, telephone and FAX number of the person making the request.

5. Do not debit WinSystems for the repair. WinSystems does not authorize debits.
After the RMA number isissued, please return the products promptly. Make sure the RMA number isvisible on the
outside of the shipping package.

The customer must send the product freight prepaid and insured. The product must be enclosed in an anti-static bag
to protect it from damage caused by static electricity. Each bag must be completely sealed. Packing material must
separate each unit returned and placed as a cushion between the unit(s) and the sides and top of the shipping
container. WinSystems is not responsible for any damage to the product due to inadequate packaging or static
electricity.

	Home
	Table of Contents
	Visual Index - Quick Reference
	1 General Information
	1.1 Features
	1.2 General Description
	1.3 Specifications

	2 PCM-UIO48A Technical Reference
	2.1 Introduction
	2.2 I/O Address Selection
	2.3 Interrupt Routing Selection
	2.4 I/O Connector Pinout
	2.5 PC/104 Bus Interface
	2.6 WS16C48 Register Definitions
	2.7 Connector/Jumper Summary

	3 PCM-UIO48A Programming Reference
	3.1 Introduction
	3.2 Function Definitions
	3.3 Sample Programs

	APPENDIX A I/O Routine & Sample Program Source Listings
	APPENDIX B Cable Drawings and Software Examples
	Warranty and Repair Information
	Untitled

