

 OPERATIONS MANUAL
 PCM-UIO48A

WinSystems reserves the right to make changes in the circuitry
 and specifications at any time without notice.

 Copyright 1996 by WinSystems. All Rights Reserved.

NOTE: This manual has been designed and created for use as part of the WinSystems’ Technical Manuals
CD and/or the WinSystems’ website. If this manual or any portion of the manual is downloaded, copied or
emailed, the links to additional information (i.e. software, cable drawings) will be inoperable.

RE VI SION HIS TORY
P/N 403- 0255- 000

ECO Num ber Date Code Re vi sion
ORIGI NATED 961112 B
97- 34 970527 B1

WinSystems - "The Embedded Systems Authority"

TABLE OF CONTENTS

Section Paragraph Title Page

 Visual Index – Quick Reference i

1 General Information 1-1

1.1 Features 1-1
1.2 Introduction 1-1
1.3 Specifications 1-2

2 PCM-UIO48A Technical Reference 2-1

2.1 Introduction 2-1
2.2 I/O Address Selection 2-1
2.3 Interrupt Routing Selection 2-2
2.4 I/O Connector Pinout 2-3
2.5 PC/104 Bus Interface 2-4
2.6 WS16C48 Register Definitions 2-5
2.7 Connector/Jumper Summary 2-6

3 PCM UIO48A Programming Reference 3-1

3.1 Introduction 3-1
3.2 Function Definitions 3-1
3.3 Sample Programs 3-5

 APPENDIX A I/O Routine and Sample Program Source Listings

 APPENDIX B Cable Drawings and Software Drivers & Examples

 Warranty and Repair Information

Visual Index – Quick Reference

For the convenience of the user, a copy of the Visual Index has been provided with direct
links to connector and jumper configuration data.

J1
Ports 3-5 I/O

Connector

J2
Ports 0-2 I/O

Connector

J3
Base I/O Address
Selection Jumper

J7
Auxillary Interrupt Routing

Header

J4
Interrupt Routing

Header

J5
PC/104 8-bit Bus

Connector
J6

PC/104 16-bit Bus
Connector

i OPERATIONS MANUAL PCM-UIO48A 970527

1 GENERAL INFORMATION

1.1 FEATURES

n 48 Digi tal I/O Lines
n PC/104 8- bit in ter face
n Each line can serve as an in put or an out put
n Read back ca pa bil ity on all out put lines
n Pro gram ma ble po lar ity event sense on 24 lines
n Com pati ble with stan dard I/O racks
n +5 Volt only op era tion
n Ex tended tem pera ture range -40°C to +85°C

1.2 GENERAL DESCRIPTION

The PCM- UIO48A is a highly ver sa tile PC/104 in put/out put mod ule pro vid ing 48 lines of digi tal
I/O. It is unique in its abil ity to moni tor 24 lines for both ris ing and fal ling digi tal edge tran si tions, latch
them, and then is sue an in ter rupt to the host proc es sor. The ap pli ca tion in ter rupt serv ice rou tine can
quickly de ter mine, through a se ries of in ter rupt iden ti fi ca tion reg is ters, the ex act port(s) and bit(s)
which have tran si tioned. The PCM- UIO48A util izes the Win Sys tems' WS16C48 ASIC High Den sity
I/O Chip (HDIO). The first 24 lines are ca pa ble of fully latched event sens ing with the sense po lar ity be -
ing soft ware pro gram ma ble. Two 50- pin I/O con nec tors al low for easy mat ing with in dus try stan d ard
I/O racks.

970527 OPERATIONS MANUAL PCM-UIO48A Page 1 - 1

1.3 SPECIFICATIONS

1.3.1 Electrical

Bus In ter face : PC/104 8- Bit (Op tional -16 model al lows ac cess to IRQ8 through IRQ15)

VCC : +5V +/-5% @ 12mA typi cal with no I/O con nec tions.

I/O Ad dress ing : 12- bit user jumper able base ad dress. Each board uses 16 con secu tive ad -
dresses.

1.3.2 Mechanical

Di men sions : 3.8" X 3.6" X 0.5"

PC Board : FR-4 Ep oxy glass with 2 sig nal lay ers, 2 power planes, screened com po nent
 leg end, and plated through holes.

Jump ers : 0.025" square posts on 0.10" cen ters

Con nec tors : 50 Pin 0.10" grid RN type IDH- 50- LP

1.3.3 Environmental

Op er at ing Tem pera ture: -40°C to +85° C

Non Con dens ing Hu mid ity : 5% to 95%

Page 1 - 2 OPERATIONS MANUAL PCM-UIO48A 970527

WinSystems - "The Embedded Systems Authority"

2 PCM-UIO48A TECHNICAL REFERENCE

2.1 Introduction

This sec tion of the man ual is in tended to pro vide the nec es sary in for ma tion re gard ing con figu ra -
tion, and us age of the PCM- UIO48A. Win Sys tems main tains a Tech ni cal Sup port Group to help an -
swer ques tions re gard ing con figu ra tion, us age, or pro gram ming of the board. For an swers to ques tions
not ade quately ad dressed in this man ual, con tact Tech ni cal Sup port at (817) 274- 7553 be tween 8AM
and 5PM Cen tral Time.

2.2 I/O Address Selection

The PCM- UIO48A re quires 16 con secu tive I/O ad dresses be gin ning on a 16 byte bound ary. The
jumper block at J3 al lows for user se lec tion of the base ad dress. Ad dress se lec tion is made by plac ing a
jumper on the jumper pair for the ad dress bit if a '0' is de sired or leav ing the ad dress bit open if a '1' is re -
quired for the de sired ad dress. The il lus tra tion be low shows the re la tion ship be tween the ad dress bit and
the jumper po si tions and a sam ple jump er ing for a base ad dress of 200H.

970527 OPERATIONS MANUAL PCM-UIO48A Page 2 - 1

2 4 6 8 10 12 14 16
o o o o o o o o
o o o o o o o o
1 3 5 7 9 11 13 15

J3

I/O Address Select Jumper J3

 1 o o 2
 3 o o 4
 5 o o 6
 7 o o 8
 9 o o 10
 11 o o 12
 13 o o 14
 15 o o 16

A11
A10
A9
A8
A7
A6
A5
A4

J3

I/O Base Address Select Jumper
J3 shown jumpered for 200H

2.3 Interrupt Routing Selection

When de sired the PCM- UIO48A can gen er ate an in ter rupt on up to 24 dif fer ent lines each with its
own po lar ity se lect. This in ter rupt can be routed to the PC/104 bus via the jumper at J4. 16- bit ver sions
of the board will also have the aux il lary jumper at J7 in stalled. The in ter rupt rout ing header is shown
here along with sam ple jump er ing for IRQ5.

Page 2 - 2 OPERATIONS MANUAL PCM-UIO48A 970527

WinSystems - "The Embedded Systems Authority"

 2 4 6 8 10 12
 o o o o o o
 o o o o o o
 1 3 5 7 9 11

J4

 1 2 3 4 5
 o o o o o

J7

Interrupt routing jumpers J4 and J7

 1 o o
 3 o o
 5 o o
 7 o o
 9 o o
 11 o o

 o 1
 o 2
 o 3
 o 4
 o 5

J4 J7
IRQ7
IRQ6
IRQ5
IRQ4
IRQ3
IRQ2

IRQ15
IRQ14
IRQ12
IRQ11
IRQ10

2.4 I/O Connector Pinout

The PCM- UIO48A routes its 48 lines to 50- pin IDC con nec tors at J1 and J2. The pin defi ni tions for
J1 and J2 are shown here :

NOTE : Pin 49 on each con nec tor can sup ply +5V to the I/O rack. The sup ply on each con nec tor is
pro tected from ex ces sive cur rent by a 1A minia ture fuse F1 for J1 and F2 for J2.

970527 OPERATIONS MANUAL PCM-UIO48A Page 2 - 3

WinSystems - "The Embedded Systems Authority"

 1 o o 2
 3 o o 4
 5 o o 6
 7 o o 8
 9 o o 10
 11 o o 12
 13 o o 14
 15 o o 16
 17 o o 18
 19 o o 20
 21 o o 22
 23 o o 24
 25 o o 26
 27 o o 28
 29 o o 30
 31 o o 32
 33 o o 34
 35 o o 36
 37 o o 38
 39 o o 40
 41 o o 42
 43 o o 44
 45 o o 46
 47 o o 48
 49 o o 50

P2-7
P2-6
P2-5
P2-4
P2-3
P2-2
P2-1
P2-0
P1-7
P1-6
P1-5
P1-4
P1-3
P1-2
P1-1
P1-0
P0-7
P0-6
P0-5
P0-4
P0-3
P0-2
P0-1
P0-0
+5V

GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND

J2
P5-7
P5-6
P5-5
P5-4
P5-3
P5-2
P5-1
P5-0
P4-7
P4-6
P4-5
P4-4
P4-3
P4-2
P4-1
P4-0
P3-7
P3-6
P3-5
P3-4
P3-3
P3-2
P3-1
P3-0
+5V

 1 o o 2
 3 o o 4
 5 o o 6
 7 o o 8
 9 o o 10
 11 o o 12
 13 o o 14
 15 o o 16
 17 o o 18
 19 o o 20
 21 o o 22
 23 o o 24
 25 o o 26
 27 o o 28
 29 o o 30
 31 o o 32
 33 o o 34
 35 o o 36
 37 o o 38
 39 o o 40
 41 o o 42
 43 o o 44
 45 o o 46
 47 o o 48
 49 o o 50

GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND

J1

2.5 PC/104 Bus Interface

The PCM- UIO48A con nects to the proc es sor through the PC/104 bus con nec tor at J5. The 16- bit
ver sions of the board will also have the J6 con nec tor in stalled. The pin defi ni tions for the J5 and J6 con -
nec tors are shown here for ref er ence :

.

Page 2 - 4 OPERATIONS MANUAL PCM-UIO48A 970527

WinSystems - "The Embedded Systems Authority"

 B1 o o A1
 B2 o o A2
 B3 o o A3
 B4 o o A4
 B5 o o A5
 B6 o o A6
 B7 o o A7
 B8 o o A8
 B9 o o A9
 B10 o o A10
 B11 o o A11
 B12 o o A12
 B13 o o A13
 B14 o o A14
 B15 o o A15
 B16 o o A16
 B17 o o A17
 B18 o o A18
 B19 o o A19
 B20 o o A20
 B21 o o A21
 B22 o o A22
 B23 o o A23
 B24 o o A24
 B25 o o A25
 B26 o o A26
 B27 o o A27
 B28 o o A28
 B29 o o A29
 B30 o o A30
 B31 o o A31
 B32 o o A32

GND
RESET

+5V
IRQ9

-5V
DRQ2

-12V
0WS
+12V
GND

MEMW
MEMR

IOW
IOR

DACK3
DRQ3

DACK1
DRQ1

REFRESH
SYSCLK

IRQ7
IRQ6
IRQ5
IRQ4
IRQ3

DACK2
TC

BALE
+5V

OSC
GND
GND

IOCHK
BD7
BD6
BD5
BD4
BD3
BD2
BD1
BD0
IOCHRDY
AEN
SA19
SA18
SA17
SA16
SA15
SA14
SA13
SA12
SA11
SA10
SA9
SA8
SA7
SA6
SA5
SA4
SA3
SA2
SA1
SA0
GND

 C0 o o D0
 C1 o o D1
 C2 o o D2
 C3 o o D3
 C4 o o D4
 C5 o o D5
 C6 o o D6
 C7 o o D7
 C8 o o D8
 C9 o o D9
 C10 o o D10
 C11 o o D11
 C12 o o D12
 C13 o o D13
 C14 o o D14
 C15 o o D15
 C16 o o D16
 C17 o o D17
 C18 o o D18
 C19 o o D19

GND
SBHE
LA23
LA22
LA21
LA20
LA19
LA18
LA17

MEMR
MEMW

SD8
SD9

SD10
SD11
SD12
SD13
SD14
SD15
KEY

GND
MEMCS16
IOCS16
IRQ10
IRQ11
IRQ12
IRQ15
IRQ14
DACK0
DRQ0
DACK5
DRQ5
DACK6
DRQ6
DACK7
DRQ7
VCC
MASTER
GND
GND

J5 J6

2.6 WS16C48 Register Definitions

The PCM- UIO48A uses the Win Sys tems' ex clu sive ASIC de vice, the WS16C48. This de vice pro -
vides 48 lines of digi tal I/O. There are 17 unique reg is ters within the WS16C48. The fol low ing ta ble
sum ma rizes the reg is ters and the text that fol lows pro vides de tails on each of the in ter nal reg is ters.

Reg is ter De tails

Port 0-5 I/O - Each I/O bit in each of these 6 ports can be in di vidu ally pro grammed for in put or out -
put. Writ ing a '0' to a bit po si tion causes the cor re spond ing out put pin to go to a High- Im ped ance state
(pulled high by ex ter nal 10K ohm re sis tors). This al lows it to be used as an in put. When used in the in put
mode, a read re flects the in verted state of the I/O pin, such that a high on the pin will read as a '0' in the
reg is ter. Writ ing a '1' to a bit po si tion causes the out put pin to sink cur rent (up to 12mA), ef fec tively
pull ing it low.

INT_PEND ING - This read only reg is ter re flects the com bined state of the INT_ID0 through
INT_ID2 reg is ters. When any of the lower 3 bits are set, it in di cates that an in ter rupt is pend ing on the
I/O port cor re spond ing to the bit po si tion(s) that are set. Read ing this reg is ter al lows an In ter rupt Serv -
ice Rou tine to quickly de ter mine if any in ter rupts are pend ing and which I/O port has an in ter rupt pend -
ing.

PAGE/LOCK - This reg is ter serves two pur poses. The up per two bits se lect the reg is ter page in use
as shown here :

D7 D6 Page

0 0 Page 0
0 1 Page 1
1 0 Page 2
1 1 Page 3

970527 OPERATIONS MANUAL PCM-UIO48A Page 2 - 5

WinSystems - "The Embedded Systems Authority"

I/O Ad dress
Off set Page 0 Page 1 Page 2 Page 3

00H Port 0 I/O Port 0 I/O Port 0 I/O Port 0 I/O
01H Port 1 I/O Port 1 I/O Port 1 I/O Port 1 I/O
02H Port 2 I/O Port 2 I/O Port 2 I/O Port 2 I/O
03H Port 3 I/O Port 3 I/O Port 3 I/O Port 3 I/O
04H Port 4 I/O Port 4 I/O Port 4 I/O Port 4 I/O
05H Port 5 I/O Port 5 I/O Port 5 I/O Port 5 I/O
06H INT_PEND ING INT_PEND ING INT_PEND ING INT_PEND ING
07H Page/Lock Page/Lock Page/Lock Page/Lock
08H N/A POL_0 ENAB_0 INT_ID0
09H N/A POL_1 ENAB_1 INT_ID1
0AH N/A POL_2 ENAB_2 INT_ID2

Bits 5-0 al low for lock ing of the I/O ports. A '1' writ ten to the I/O port po si tion will pro hibit fur ther
writes to the cor re spond ing I/O port.

POL0 - POL3 - These reg is ters are ac ces si ble when page 1 is se lected. They al low in ter rupt po lar -
ity se lec tion on a port- by- port and bit- by- bit ba sis. Writ ing a '1' to a bit po si tion se lects ris ing edge de -
tec tion in ter rupts while writ ing a '0' to a bit po si tion se lects fal ling edge de tec tion in ter rupts.

EN AB0 - EN AB3 - These reg is ters are ac ces si ble when page 2 is se lected. They al low for port- by-
port and bit- by- bit ena bling of the edge de tec tion in ter rupts. When set to a '1' the edge de tec tion in ter -
rupt is en abled for the cor re spond ing port and bit. When cleared to a '0' the bit's edge de tec tion in ter rupt
is dis abled. Note that this reg is ter can be used to in di vidu ally clear a pend ing in ter rupt by dis abling and
reena bling the pend ing in ter rupt.

INT_ID0 - INT_ID2 - These reg is ters are ac ces si ble when page 3 is se lected. They are used to
iden tify cur rently pend ing edge in ter rupts. A bit when read as a '1' in di cates that an edge of the po lar ity
pro grammed into the cor re spond ing po lar ity reg is ter has been rec og nized. Note that a write to this reg -
is ter (value ig nored) clears ALL of the pend ing in ter rupts in this reg is ter.

2.7 Connector/Jumper Summary

Con nec tor/ Pur pose Page Ref er ence
Jumper

J1 Ports 3-5 I/O con nec tor 2-3
J2 Ports 0-2 I/O con nec tor 2-3
J3 Base I/O Ad dress se lect jumper 2-1
J4 In ter rupt rout ing header 2-2
J5 PC/104-8 bus con nec tor 2-4
J6 PC/104- 16 bus con nec tor 2-4
J7 Aux il lary in ter rupt rout ing header 2-2

Page 2 - 6 OPERATIONS MANUAL PCM-UIO48A 970527

WinSystems - "The Embedded Systems Authority"

3 PCM-UIO48A Programming Reference

3.1 Introduction

This sec tion pro vides ba sic docu men ta tion for the in cluded I/O rou tines. It is in tended that the ac -
com pa ny ing source code equip the pro gram mer with a ba sic li brary of I/O func tions for the PCM-
 UIO48A or can serve as the ba sis from which application- specific code can be de rived.

The sam ple I/O rou tines and sam ple pro grams were com piled and tested us ing the Bor land C/C++
com piler Ver sion 3.1. The rou tines should read ily port to any com piler sup port ing ba sic port I/O in -
struc tions.

3.2 Function Definitions

This sec tion briefly de scribes each of the func tions con tained in the driver. Where nec es sary, short
ex am ples will be pro vided to il lus trate us age. Any ap pli ca tion mak ing use of any of the driver func tions
should in clude the header file “uio48.h”, which in cludes the func tion pro to types and the needed con -
stant defi ni tions.

Note that all of the func tions util ize the con cept of a “bit_number”. The “bit_number” is a value
from 1 to 48 (1 to 24 for in ter rupt re lated func tions) that cor re lates to a spe cific I/O pin. Bit_number 1 is
port 0 bit 0, and con tin ues though to bit_number 48 at port 5 bit 7.

INIT_IO - Ini tial ize I/O, set all ports to in put

Syn tax

void init_io(un signed io_ad dress);

De scrip tion

This func tion takes a sin gle ar gu ment :

io_ad dress - the I/O ad dress of the WS16C48 chip.

There is no re turn value. This func tion ini tial izes all I/O pins for in put (sets them high), dis ables all
in ter rupt sens ing, and sets the im age val ues.

970527 OPERATIONS MANUAL PCM-UIO48A Page 3 - 1

READ_BIT - Reads an I/O port Bit

Syn tax

int read_bit(int bit_number);

De scrip tion

This func tion takes a sin gle ar gu ment :

bit_number - This is a value from 1 to 48 that in di cates the I/O pin to read from.

This func tion re turns the state of the I/O pin. A '1' is re turned if the I/O pin is low and a '0' is re turned
if the pin is high.

WRITE_BIT - Write a 1 or 0 to an I/O pin

Syn tax

void write_bit(int bit_number, int value);

De scrip tion

This func tion takes two ar gu ments

bit_number - This is a value from 1 to 48, which is the bit to be acted upon.

value - is ei ther 1 or 0.

This func tion al lows for the writ ing of a sin gle bit to ei ther a '0' or a '1' as speci fied by the sec ond ar -
gu ment. There is no re turn value and other bits in the I/O port are not af fected.

SET_BIT - Set the speci fied I/O Bit

Syn tax

void set_bit(int bit_number);

De scrip tion

This func tion takes a sin gle ar gu ment :

bit_number - a value be tween 1 and 48 speci fy ing the port bit to set.

This func tion sets the speci fied I/O port bit. Note that set ting a bit re sults in the I/O pin ac tu ally go -
ing low. There is no re turn value and other bits in the same I/O port are un af fected.

Page 3 - 2 OPERATIONS MANUAL PCM-UIO48A 970527

WinSystems - "The Embedded Systems Authority"

CLR_BIT - Clear the speci fied I/O Bit

Syn tax

void clr_bit(int bit_number);

De scrip tion

This func tion takes a sin gle ar gu ment :

bit_number - This value from 1 to 48 in di cates the bit number to clear.

This func tion clears the speci fied I/O bit. Note that clear ing the I/O bit re sults in the ac tual I/O pin
go ing high. This func tion does not af fect any bits other than the one speci fied.

ENAB_INT - En able Edge In ter rupt, se lect po lar ity

Syn tax

void enab_int(int bit_number, int po lar ity);

De scrip tion

This func tion re quires two ar gu ments

bit_number - A value from 1 to 24 speci fy ing the ap pro pri ate bit.

po lar ity - Speci fies ris ing or fal ling edge po lar ity de tect. The con stants RIS ING and FAL LING are de -
fined
 in “uio48.h”

This func tion en ables the edge de tec tion cir cuitry for the speci fied bit at the speci fied po lar ity. It
does not un mask the in ter rupt con trol ler, in stall vec tors, or han dle in ter rupts when they oc cur. There is
no re turn value and only the speci fied bit is af fected.

970527 OPERATIONS MANUAL PCM-UIO48A Page 3 - 3

WinSystems - "The Embedded Systems Authority"

DISAB_INT - Dis able Edge De tect In ter rupt De tec tion

Syn tax

void disab_int(int bit_number);

De scrip tion

This func tion re quires a sin gle ar gu ment “

bit_number - A value from 1 to 24 speci fy ing the ap pro pri ate bit.

This func tion shuts down the edge de tec tion in ter rupts for the speci fied bit. There is no re turn value
and no harm is done by call ing this func tion for a bit which did not have edge de tec tion in ter rupts en -
abled. There is no af fect on any other bits.

CLR_INT - Clear the speci fied pend ing in ter rupt

Syn tax

void clr_int(bit_number);

De scrip tion

This func tion re quires a sin gle ar gu ment :

bit_number - The speci fied the bit number from 1 to 24 to re set the in ter rupt.

This func tion clears a pend ing in ter rupt on the speci fied bit. It does this by dis abling and re- enabling
the in ter rupt. The net re sult af ter the call is that the in ter rupt is no longer pend ing and is re armed for the
next tran si tion of the same po lar ity. Call ing this func tion on a bit that has not been en abled for in ter rupts
will re sult in its in ter rupt be ing en abled with an un de fined po lar ity. Call ing this func tion with no in ter -
rupt cur rently pend ing will have no ad verse af fect. Only the speci fied bit is af fected.

GET_INT - Re trieve bit number of pend ing in ter rupt

Syn tax

int get_int(void);

De scrip tion

This func tion re quires no ar gu ments and re turns ei ther a '0' for no bit in ter rupts pend ing or a value
be tween 1 and 24 rep re sent ing a bit number that has a pend ing edge de tect in ter rupt. The rou tine re turns
with the first in ter rupt found and be gins its search at port 0 bit 0 pro ceed ing through to port 2 bit 7. It is
nec es sary to use ei ther clr_int() or disab_int() to avoid re turn ing the same bit number con tinu ously.

Page 3 - 4 OPERATIONS MANUAL PCM-UIO48A 970527

WinSystems - "The Embedded Systems Authority"

This func tion may ei ther be used in an ap pli ca tion's ISR or can be used in the fore ground to poll for bit
tran si tions.

3.3 SAMPLE PROGRAMS

There are three sam ple pro grams in source code form in cluded on the PCM- UIO48A disk ette.
These pro grams are not use ful by them selves but are pro vided to il lus trate the us age of the I/O func tions
pro vided in UIO48.C.

FLASH.C

This pro gram was com piled with Bor land C/C++ ver sion 3.1 on the com mand line with :

bcc flash.c uio48.c

This pro gram il lus trates the most ba sic us age of the PCM- UIO48A board. It uses three func tions
from the driver code. The init_io() func tion is used to ini tial ize the I/O func tions and the set_bit() and
clr_bit() func tions are used to se quence through all 48 bits turn ing each on and then off in turn.

POLL.C

This pro gram was com piled with Bor land C/C++ ver sion 3.1 on the com mand line with :

bcc poll.c uio48.c

This pro gram il lus trates ad di tional fea tures of the WS16C48 and the I/O li brary func tions. It pro -
grams the first 24 bits for in put, arms them for fal ling edge de tec tion and then polls the I/O rou tine
get_int() to de ter mine if any tran si tions have taken place.

INT.C

This pro gram was com piled and with Bor land C/C++ ver sion 3.1 on the com mand line with :

bcc int.c uio48.c

This pro gram is iden ti cal in func tion to the “poll.c” pro gram ex cept that in ter rupts are ac tive and all
up dat ing of the tran si tion coun ters is ac com plished in the back ground dur ing the in ter rupt serv ice rou -
tine.

Sum mary
The source code for all three sam ple pro grams as well as the I/O rou tines are in cluded on the ac com -

pa ny ing disk ette. The source code is also pro vided in printed form in Ap pen dix C. These I/O rou tines
along with the sam ple pro grams should pro vide a good ba sis on which to build an ap pli ca tion util iz ing
the fea tures of the PCM- UIO48A.

970527 OPERATIONS MANUAL PCM-UIO48A Page 3 - 5

WinSystems - "The Embedded Systems Authority"

4 APPENDIX A

I/O Rou tine & Sam ple Pro gram Source List ings

/* UIO48.H

Copyright 1996 by WinSystems Inc.

Permission is hereby granted to the purchaser of the WinSystems
UIO cards and CPU products incorporating the UIO device, to distribute
any binary file or files compiled using this source code directly or
in any work derived by the user from this file. In no case may the
source code, original or derived from this file, be distributed to any
third party except by explicit permission of WinSystems. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or implied.
In no case shall WinSystems be liable for any direct or indirect loss
or damage, real or consequential resulting from the usage of this
source code. It is the user's sole responsibility to determine
fitness for any considered purpose.

*/
/**
* Name : uio48.h
*
* Project : PCM-UIO48 Software Samples/Examples
*
* Date : October 30, 1996
*
* Revision: 1.00
*
* Author : Steve Mottin
*
**
*
* Changes :
*
* Date Revision Description
* ________ ________ __
* 10/30/96 1.00 Created
*

*/

#define RISING 1
#define FALLING 0

void init_io(unsigned io_address);
int read_bit(int bit_number);
void write_bit(int bit_number);
void set_bit(int bit_number);
void clr_bit(int bit_number);
void enab_int(int bit_number, int polarity);
void disab_int(int bit_number);
void clr_int(int bit_number);
int get_int(void);

/* UIO48.C

Copyright 1996 by WinSystems Inc.

Permission is hereby granted to the purchaser of the WinSystems
UIO cards and CPU products incorporating the UIO device, to distribute
any binary file or files compiled using this source code directly or
in any work derived by the user from this file. In no case may the
source code, original or derived from this file, be distributed to any
third party except by explicit permission of WinSystems. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or implied.
In no case shall WinSystems be liable for any direct or indirect loss
or damage, real or consequential resulting from the usage of this
source code. It is the user's sole responsibility to determine
fitness for any considered purpose.

*/
/**
* Name : uio48.c
*
* Project : PCM-UIO48 Software Samples/Examples
*
* Date : October 30, 1996
*
* Revision: 1.00
*
* Author : Steve Mottin
*
**
*
* Changes :
*
* Date Revision Description
* ________ ________ __
* 10/30/96 1.00 Created
*

*/

#include <dos.h>

/* This global holds the base address of the UIO chip */

unsigned base_port;

/* This global array holds the image values of the last write to each I/O
 ports. This allows bit manipulation routines to work without having to
 actually do a read-modify-write to the I/O port.
*/

unsigned port_images[6];

/*===
* INIT_IO
*
* This function take a single argument :
*
*
* io_address : This is the base I/O address of the 16C48 UIO Chip
* on the board.
*
*
* This function initializes all I/O pins for input, disables all interrupt
* sensing, and sets the image values.
*
===/

void init_io(unsigned io_address)
{
int x;

/* Save the specified address for later use */

base_port = io_address;

/* Clear all of the I/O ports. This also makes them inputs */

for(x=0; x < 7; x++)
outportb(base_port+x, 0);

/* Clear our image values as well */

for(x=0; x < 6; x++)
port_images[x] = 0;

/* Set page 2 access, for interrupt enables */

outportb(base_port+7,0x80);

/* Clear all interrupt enables */

outportb(base_port+8,0);
outportb(base_port+9,0);
outportb(base_port+0x0a,0);

/* Restore normal page 0 register access */
outportb(base_port+7,0);

}

/*===
*
* READ_BIT
*
*
* This function takes a single argument :
*
*
* bit_number : The integer argument specifies the bit number to read.
* Valid arguments are from 1 to 48.
*
* return value : The current state of the specified bit, 1 or 0.
*
* This function returns the state of the current I/O pin specified by
* the argument bit_number.
*
===/

int read_bit(int bit_number)
{
unsigned port;
int val;

/* Adjust the bit_number to 0 to 47 numbering */

--bit_number;

/* Calculate the I/O port address based on the updated bit_number */

port = (bit_number / 8) + base_port;

/* Get the current contents of the port */

val = inportb(port);

/* Get just the bit we specified */

val = val & (1 << (bit_number % 8));

/* Adjust the return for a 0 or 1 value */

if(val)
return 1;

return 0;
}

/*===
*
* WRITE_BIT
*
* This function takes two arguments :
*
*
* bit_number : The I/O pin to access is specified by bit_number 1 to 48.
*
* val : The setting for the specified bit, either 1 or 0.
*
* This function sets the specified I/O pin to either high or low as dictated
* by the val argument. A non zero value for val sets the bit.
*
===/

void write_bit(int bit_number, int val)
{
unsigned port;
unsigned temp;
unsigned mask;

/* Adjust bit_number for 0 based numbering */

--bit_number;

/* Calculate the I/O address of the port based on the bit number */

port = (bit_number / 8) + base_port;

/* Use the image value to avoid having to read the port first. */

temp = port_images[bit_number / 8];/* Get current value */

/* Calculate a bit mask for the specified bit */

mask = (1 << (bit_number % 8));

/* Check whether the request was to set or clear and mask accordingly */

if(val) /* If the bit is to be set */
temp = temp | mask;

else
temp = temp & ~mask;

/* Update the image value with the value we're about to write */

port_images[bit_number / 8] = temp;

/* Now actually update the port. Only the specified bit is affected */

outportb(port,temp);
}

/*===
* SET_BIT
*
*
* This function takes a single argument :
*
* bit_number : The bit number to set.
*
* This function sets the specified bit.
*
===/

void set_bit(int bit_number)
{

write_bit(bit_number,1);
}

/*===
* CLR_BIT
*
*
* This function takes a single argument :
*
* bit_number : The bit number to clear.
*
* This function clears the specified bit.
*
===/

void clr_bit(int bit_number)
{

write_bit(bit_number,0);
}

/*===
*
* ENAB_INT
*
* This function takes two arguments :
*
* bit_number : The bit number to enable intterups for. Range from 1 to 48.
*
* polarity : This specifies the polarity of the interrupt. A non-zero
* argument enables rising-edge interrupt. A zero argument
* enables the interrupt on the flling edge.
*
* This function enables within the 16C48 an interrupt for the specified bit
* at the specified polarity. This function does not setup the interrupt
* controller, nor does it supply an interrupr handler.
*
==/

void enab_int(int bit_number, int polarity)
{
unsigned port;
unsigned temp;
unsigned mask;

/* Adjust for 0 based numbering */

--bit_number;

/* Calculate the I/O address based uppon the bit number */

port = (bit_number / 8) + base_port + 8;

/* Calculate a bit mask based on the specified bit number */

mask = (1 << (bit_number % 8));

/* Turn on page 2 access */

outportb(base_port+7,0x80);

/* Get the current state of the interrupt enable register */

temp = inportb(port);

/* Set the enable bit for our bit number */

temp = temp | mask;

/* Now update the interrupt enable register */

outportb(port,temp);

/* Turn on access to page 1 for polarity control */

outportb(base_port+7,0x40);

/* Get the current state of the polarity register */

temp = inportb(port); /* Get current polarity settings */

/* Set the polarity according to the argument in the image value */

if(polarity) /* If the bit is to be set */
temp = temp | mask;

else
temp = temp & ~mask;

/* Write out the new polarity value */

outportb(port,temp);

/* Set access back to Page 0 */

outportb(base_port+7,0x0);

}

/*===
*
* DISAB_INT
*
* This function takes a single argument :
*
* bit_number : Specifies the bit number to act upon. Range is from 1 to 48.
*
* This function shuts off the interrupt enabled for the specified bit.
*
===/

void disab_int(int bit_number)
{
unsigned port;
unsigned temp;
unsigned mask;

/* Adjust the bit_number for 0 based numbering */

--bit_number;

/* Calculate the I/O Address for the enable port */

port = (bit_number / 8) + base_port + 8;

/* Calculate the proper bit mask for this bit number */

mask = (1 << (bit_number % 8));

/* Turn on access to page 2 registers */

outportb(base_port+7,0x80);

/* Get the current state of the enable register */

temp = inportb(port);

/* Clear the enable bit int the image for our bit number */

temp = temp & ~mask;

/* Update the enable register with the new information */

outportb(port,temp);

/* Set access back to page 0 */

outportb(base_port+7,0x0);

}

/*==
*
* CLR_INT
*
* This function takes a single argument :
*
* bit_number : This argument specifies the bit interrupt to clear. Range
* is 1 to 24.
*
*
* This function is use to clear a bit interrupt once it has been recognized.
* The interrupt left enabled.
*
===/

void clr_int(int bit_number)
{
unsigned port;
unsigned temp;
unsigned mask;

/* Adjust for 0 based numbering */

--bit_number;

/* Calculate the correct I/O address for our enable register */

port = (bit_number / 8) + base_port + 8;

/* Calculate a bit mask for this bit number */

mask = (1 << (bit_number % 8));

/* Set access to page 2 for the enable register */

outportb(base_port+7,0x80);

/* Get current state of the enable register */

temp = inportb(port);

/* Temporarily clear only OUR enable. This clears the interrupt */

temp = temp & ~mask; /* clear the enable for this bit */

/* Write out the temporary value */

outportb(port,temp);

/* Re-enable our interrupt bit */

temp = temp | mask;

/* Write it out */

outportb(port,temp);

/* Set access back to page 0 */

outportb(base_port+7,0x0);

}

/*==
*
* GET_INT
*
* This function take no arguments.
*
* return value : The value returned is the highest level bit interrupt
* currently pending. Range is 1 to 24.
*
* This function returns the highest level interrupt pending. If no interrupt
* is pending, a zero is returned. This function does NOT clear the interrupt.
*
===/

int get_int(void)
{
int temp;
int x;

/* read the master interrupt pending register, mask off undefined bits */

temp = inportb(base_port+6) & 0x07;

/* If there are no interrupts pending, return a 0 */

if((temp & 7) == 0)
return(0);

/* There is something pending, now we need to identify what it is */

/* Set access to page 3 for interrupt id registers */

outportb(base_port+7,0xc0);

/* Read interrupt ID register for port 0 */

temp = inportb(base_port+8);

/* See if any bit set, if so return the bit number */

if(temp !=0)
{

for(x=0; x <=7; x++)
{

if(temp & (1 << x))
{

outportb(base_port+7,0); /* Turn off access */
return(x+1); /* Return bitnumber with active int */

}
}

}

/* None in Port 0, read port 1 interrupt ID register */

temp = inportb(base_port+9);

/* See if any bit set, if so return the bit number */

if(temp !=0)
{

for(x=0; x <=7; x++)
{

if(temp & (1 << x))
{

outportb(base_port+7,0); /* Turn off access */
return(x+9); /* Return bitnumber with active int */

}
}

}

/* Lastly, read status of port 2 int id */

temp = inportb(base_port+0x0a); /* Read port 2 status */

/* If any pending, return the appropriate bit number */

if(temp !=0)
{

for(x=0; x <=7; x++)
{

if(temp & (1 << x))
{

outportb(base_port+7,0); /* Turn off access */
return(x+17); /* Return bitnumber with active int */

}
}

}

/* We should never get here unless the hardware is misbehaving but just
 to be sure. We'll turn the page access back to 0 and return a 0 for
 no interrupt found.
*/

outportb(base_port+7,0);
return 0;

}

/* FLASH.C

Copyright 1996 by WinSystems Inc.

Permission is hereby granted to the purchaser of the WinSystems
UIO cards and CPU products incorporating the UIO device, to distribute
any binary file or files compiled using this source code directly or
in any work derived by the user from this file. In no case may the
source code, original or derived from this file, be distributed to any
third party except by explicit permission of WinSystems. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or implied.
In no case shall WinSystems be liable for any direct or indirect loss
or damage, real or consequential resulting from the usage of this
source code. It is the user's sole responsibility to determine
fitness for any considered purpose.

*/

#include <stdio.h>
#include <conio.h>
#include <dos.h>
#include "uio48.h"

/* This is where we have our board jumpered to */

#define BASE_PORT 0x200

/* This is an utlra-simple demonstration program of some of the functions
 available in the UIO48 source code library. This program simply sets and
 clears each I/O line in succession. It was tested by hooking LEDs to all
 of the I/O lines and wathching the lit one race through the bits.
*/

void main()
{
int x;

/* Initialize all I/O bits, and set then for input */

init_io(BASE_PORT);

/* We'll repeat our sequencing until a key is pressed */

while(!kbhit())
{

/* We will light the LED attached to each of the 48 lines */
for(x=1; x <=48; x++)
{

/* Setting the bit lights the LED */
set_bit(x);
/* The wait time is subjective. We liked 100mS */
delay(100);
/* Now turn off the LED */
clr_bit(x);

}
}
getch();

}

/* POLL.C

Copyright 1996 by WinSystems Inc.

Permission is hereby granted to the purchaser of the WinSystems
UIO cards and CPU products incorporating the UIO device, to distribute
any binary file or files compiled using this source code directly or
in any work derived by the user from this file. In no case may the
source code, original or derived from this file, be distributed to any
third party except by explicit permission of WinSystems. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or implied.
In no case shall WinSystems be liable for any direct or indirect loss
or damage, real or consequential resulting from the usage of this
source code. It is the user's sole responsibility to determine
fitness for any considered purpose.

*/

#include <stdio.h>
#include <conio.h>
#include "uio48.h"

#define BASE_PORT 0x200

/* This program uses the edge detection interrupt capability of the
 WS16C48 to count transitions on the first 24 lines. It does this
 however, no by using true interrupts but by polling for transitions
 using the get_int() function.

*/

/* Our transition totals are stored in this array */

unsigned int_counts[25];

/* Definitions for local functions */

void check_ints(void);

void main()
{
int x;

/* Initialize the I/O ports. Set all I/O pins to input */

init_io(BASE_PORT);

/* Initialize our transition counts, and enable falling edge
 transition interrupts.
*/

for(x=1; x<25; x++)
{

int_counts[x] = 0; /* Clear the counts */
enab_int(x,FALLING); /* Enable the falling edge interrupts */

}

/* Clean up the screen for our display. Nothing fancy */
clrscr();

for(x=1; x<25; x++)
{

gotoxy(1,x);
printf("Bit number %02d ",x);

}

/* We will continue to display until any key is pressed */

while(!kbhit())
{

/* Retrieve any pending transitions and update the counts */

check_ints();

/* Display the current count values */

for(x=1; x < 25; x++)
{

gotoxy(16,x);
printf("%05u",int_counts[x]);

}
}
getch();

}

void check_ints()
{
int current;

/* Get the bit number of a pending transition interrupt */

current = get_int();

/* If it's 0 there are none pending */

if(current == 0)
return;

/* Clear and rearm this one so we can get it again */

clr_int(current);

/* Tally a transition for this bit */

++int_counts[current];
}

/* INTS.C

Copyright 1996 by WinSystems Inc.

Permission is hereby granted to the purchaser of the WinSystems
UIO cards and CPU products incorporating the UIO device, to distribute
any binary file or files compiled using this source code directly or
in any work derived by the user from this file. In no case may the
source code, original or derived from this file, be distributed to any
third party except by explicit permission of WinSystems. This file is
distributed on an "As-is" basis and no warranty as to performance,
fitness of purposes, or any other warranty is expressed or implied.
In no case shall WinSystems be liable for any direct or indirect loss
or damage, real or consequential resulting from the usage of this
source code. It is the user's sole responsibility to determine
fitness for any considered purpose.

*/

#include <stdio.h>
#include <dos.h>
#include <conio.h>
#include "uio48.h"

#define BASE_PORT 0x200

/* This program like the poll.c sample uses the edge detection interrupt
 capability of the WS16C48 to count edge transitions. Unlike poll.c,
 however this program actually uses interrupts and update all of the
 transition counters in the background.

*/

/* Our transition totals are stored in this global array */

unsigned int_counts[25];

/* Function declarations for local functions */

void check_ints(void);
void interrupt int_handler(void);
void interrupt (*old_handler)(void);

void main()
{
int x;

/* Initialize the I/O ports. Set all I/O pins to input */

init_io(BASE_PORT);

/* Install an interrupt handler for the board */

/* We disable interrupts whenever we're changing the environment */

disable(); /* Disable interrupts during initialization */

/* Get the old handler and save it for later resoration */

old_handler = getvect(0x0d); /* Hardwired for IRQ5 */

 /* Install out new interrupt handler */

setvect(0x0d,int_handler);

/* Clear the transition count values and enable the falling edge
 interrupts.
*/

for(x=1; x<25; x++)
{

int_counts[x] = 0; /* Clear the counts */
enab_int(x,FALLING); /* Enable the falling edge interrupts */

}

/* Unmask the interrupt controller */

outportb(0x21,(inportb(0x21) & 0xdf)); /* Unmask IRQ 5 */

/* Reenable interrupts */
enable();

/* Set up the display */

clrscr(); /* Clear the Text Screen */

for(x=1; x<25; x++)
{

gotoxy(1,x);
printf("Bit Number %02d ",x);

}

/* We will continuously print the transition totals until a

 key is pressed */

/* All of the processing of the transition interrupts, including
 updating the counts is done in the background when an interrupt
 occurs.
*/

while(!kbhit())
{

for(x=1; x < 25; x++)
{

gotoxy(16,x);
printf("%05u",int_counts[x]);

}
}

getch();

/* Disable interrupts while we restore things */

disable();

/* Mask off the interrupt at the interrupt controller */

outportb(0x21,inportb(0x21) | 0x20); /* Mask IRQ 5 */

/* Restore the old handler */

setvect(0x0d,old_handler); /* Put back the old interrupt handler */

/* Reenable interrupts. Things are back they way they were before we
 started.

 */

enable();
}

/* This function is executed when an edge detection interrupt occurs */

void interrupt int_handler(void)
{
int current;

/* Get the current interrupt pending. There really should be one
 here or we shouldn't even be executing this function.

 */

current = get_int();

/* We will continue processing pending edge detect interrupts until
 there are no more present. In which case current == 0

 */

while(current)
{

/* Clear the current one so that it's ready for the next edge */

clr_int(current);

/* Tally up one for the current bit number */

++int_counts[current];

/* Get the next one, if any others pending */

current = get_int();
}

/* Issue a non-specific end of interrupt command (EOI) to the
 interrupt controller. This rearms it for the next shot.
*/

outportb(0x20,0x20); /* Do non-specific EOI */
}

APPENDIX B

Cable Drawings
CBL-115-4 4 ft., 50 conductor ribbon cable with edge connector on one end

 CBL-129-4 4 ft., 50 conductor ribbon cable with 0.10" socket connection on both ends

Software Examples
Example C functions UIO48A.ZIP

Linux Driver linux_uio48_96.zip

 Telephone: 817-274-7553 . . Fax: 817-548-1358
 http://www.winsystems.com . . E-mail: info@winsystems.com

WARRANTY

WinSystems warrants that for a period of two (2) years from the date of shipment any Products and Software
purchased or licensed hereunder which have been developed or manufactured by WinSystems shall be free of any
material defects and shall perform substantially in accordance with WinSystems' specifications therefore. With
respect to any Products or Software purchased or licensed hereunder which have been developed or manufactured
by others, WinSystems shall transfer and assign to Customer any warranty of such manufacturer or developer held
by WinSystems, provided that the warranty, if any, may be assigned. The sole obligation of WinSystems for any
breach of warranty contained herein shall be, at its option, either (i) to repair or replace at its expense any materially
defective Products or Software, or (ii) to take back such Products and Software and refund the Customer the
purchase price and any license fees paid for the same. Customer shall pay all freight, duty, broker's fees, insurance
changes and other fees and charges for the return of any Products or Software to WinSystems under this warranty.
WinSystems shall pay freight and insurance charges for any repaired or replaced Products or Software thereafter
delivered to Customer within the United States. All fees and costs for shipment outside of the United States shall be
paid by Customer. The foregoing warranty shall not apply to any Products or Software which have been subject to
abuse, misuse, vandalism, accidents, alteration, neglect, unauthorized repair or improper installations.

THERE ARE NO WARRANTIES BY WINSYSTEMS EXCEPT AS STATED HEREIN. THERE ARE NO
OTHER WARRANTIES EXPRESS OR IMPLIED INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, IN NO
EVENT SHALL WINSYSTEMS BE LIABLE FOR CONSEQUENTIAL, INCIDENTAL, OR SPECIAL
DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF DATA, PROFITS OR
GOODWILL. WINSYSTEMS' MAXIMUM LIABILITY FOR ANY BREACH OF THIS AGREEMENT OR
OTHER CLAIM RELATED TO ANY PRODUCTS, SOFTWARE, OR THE SUBJECT MATTER
HEREOF, SHALL NOT EXCEED THE PURCHASE PRICE OR LICENSE FEE PAID BY CUSTOMER
TO WINSYSTEMS FOR THE PRODUCTS OR SOFTWARE OR PORTION THEREOF TO WHICH
SUCH BREACH OR CLAIM PERTAINS.

WARRANTY SERVICE

All products returned to WinSystems must be assigned a Return Material Authorization (RMA) number. To obtain
this number, please call or FAX WinSystems' factory in Arlington, Texas and provide the following information:
 1. Description and quantity of the product(s) to be returned including its serial number.
 2. Reason for the return.
 3. Invoice number and date of purchase (if available), and original purchase order number.
 4. Name, address, telephone and FAX number of the person making the request.
 5. Do not debit WinSystems for the repair. WinSystems does not authorize debits.
After the RMA number is issued, please return the products promptly. Make sure the RMA number is visible on the
outside of the shipping package.

The customer must send the product freight prepaid and insured. The product must be enclosed in an anti-static bag
to protect it from damage caused by static electricity. Each bag must be completely sealed. Packing material must
separate each unit returned and placed as a cushion between the unit(s) and the sides and top of the shipping
container. WinSystems is not responsible for any damage to the product due to inadequate packaging or static
electricity.

	Home
	Table of Contents
	Visual Index - Quick Reference
	1 General Information
	1.1 Features
	1.2 General Description
	1.3 Specifications

	2 PCM-UIO48A Technical Reference
	2.1 Introduction
	2.2 I/O Address Selection
	2.3 Interrupt Routing Selection
	2.4 I/O Connector Pinout
	2.5 PC/104 Bus Interface
	2.6 WS16C48 Register Definitions
	2.7 Connector/Jumper Summary

	3 PCM-UIO48A Programming Reference
	3.1 Introduction
	3.2 Function Definitions
	3.3 Sample Programs

	APPENDIX A I/O Routine & Sample Program Source Listings
	APPENDIX B Cable Drawings and Software Examples
	Warranty and Repair Information
	Untitled

